

Intel[®] Pentium[®] M Processor

Datasheet

April 2004

Order Number: 252612-003

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products. Information contained herein supersedes previously published specifications on these devices from Intel.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

THE INTEL® PENTIUM® M PROCESSOR MAY CONTAIN DESIGN DEFECTS OR ERRORS KNOWN AS ERRATA WHICH MAY CAUSE THE PRODUCT TO DEVIATE FROM PUBLISHED SPECIFICATIONS. CURRENT CHARACTERIZED ERRATA ARE AVAILABLE ON REQUEST.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's Website at http://www.intel.com

Copyright © Intel Corporation 2000, 2001, 2002, 2003, 2004.

Intel, Intel logo, Pentium, and Intel SpeedStep, and Intel Centrino are registered trademarks or trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

* Other brands and names are the property of their respective owners.

1	Introd	duction	7
	1.1	Terminology	
	1.2	References	9
2	Low F	Power Features	11
	2.1	Clock Control and Low Power States	11
		2.1.1 Normal State	
		2.1.2 AutoHALT Powerdown State	
		2.1.3 HALT/Grant Snoop State	
		2.1.4 Sleep State	
		2.1.5 Deep Sleep State	
	2.2	2.1.6 Deeper Sleep State Enhanced Intel SpeedStep [®] Technology	
	2.2 2.3	Processor System Bus Low Power Enhancements	
	2.3 2.4	Processor Power Status Indicator (PSI#) Signal	
		, , , ,	
3	Electi	rical Specifications	
	3.1	System Bus and GTLREF	
	3.2	Power and Ground Pins	
	3.3	Decoupling Guidelines	
		3.3.1 VCC Decoupling	
		3.3.2 System Bus AGTL+ Decoupling	
	0.4	3.3.3 System Bus Clock (BCLK[1:0]) and Processor Clocking	
	3.4 3.5	Voltage Identification Catastrophic Thermal Protection	
	3.5 3.6	Signal Terminations and Unused Pins	
	3.7	System Bus Signal Groups	
	3.8	CMOS Signals	
	3.9	Maximum Ratings	
	3.10	Processor DC Specifications	
4	Packa	age Mechanical Specifications and Pin Information	39
	4.1	Processor Pin-Out and Pin List	47
	4.2	Alphabetical Signals Reference	
5	Thern	nal Specifications and Design Considerations	
	5.1	Thermal Specifications	
	0	5.1.1 Thermal Diode	
		5.1.2 Intel Thermal Monitor	
6	Debu	g Tools Specifications	75
	6.1	Logic Analyzer Interface (LAI)	75
		6.1.1 Mechanical Considerations	
		6.1.2 Electrical Considerations	

Figures

1	Clock Control States	11
2	Illustration of Active State VCC Static and Ripple Tolerances (Highest Frequency Mode).	28
3	Illustration of Deep Sleep State Voltage Tolerances (Lowest Frequency Mode)	30
4	Micro-FCPGA Package Top and Bottom Isometric Views	39
5	Micro-FCPGA Package - Top and Side Views	40
6	Micro-FCPGA Package - Bottom View	
7	Intel Pentium M Processor Die Offset	41
8	Micro-FCBGA Package Top and Bottom Isometric Views	43
9	Micro-FCBGA Package Top and Side Views	44
10	Micro-FCBGA Package Bottom View	
11	The Coordinates of the Processor Pins as Viewed From the Top of the Package	48

Tables

1	References	9
2	Voltage Identification Definition	19
3	System Bus Pin Groups	21
4	Processor DC Absolute Maximum Ratings	22
5	Voltage and Current Specifications	23
6 7	Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Active State) Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Deep Sleep	27
	/	29
8	Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.388 V (Active State)	31
9	Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.388 V (Deep Sleep	
	State)	
10	Voltage Tolerances for Low Voltage Intel Pentium M Processors (Active State)	
11	Voltage Tolerances for Low Voltage Intel Pentium M Processors (Deep Sleep State)	
12	Voltage Tolerances for Ultra Low Voltage Intel Pentium M Processors (Active State)	
13	Voltage Tolerances for Ultra Low Voltage Intel Pentium M Processors (Deep Sleep State)	
14	System Bus Differential BCLK Specifications	
15	AGTL+ Signal Group DC Specifications	
16	CMOS Signal Group DC Specifications	
17	Open Drain Signal Group DC Specifications	
18	Micro-FCPGA Package Dimensions	42
19	Micro-FCBGA Package Dimensions	45
20	Pin Listing by Pin Name	49
21	Pin Listing by Pin Number	. 55
22	Signal Description	62
23	Power Specifications for the Intel Pentium M Processor	70
24	Thermal Diode Interface	71
25	Thermal Diode Specifications	71

Revision History

Document Number	Revision	Description	Date
252612	001	Initial release of datasheet	March 2003
252612	002	Updates include: • Added specifications for Intel Pentium M Processor 1.7 GHz, Low Voltage Pentium M processor 1.2 GHz, and Ultra Low Voltage Pentium M processor 1 GHz in Table 5 and Table 23	June 2003
252612	003	Updates include: • Added specifications for Intel Pentium M Processor Low Voltage 1.30 GHz, and Intel Pentium M Processor Ultra Low Voltage 1.10 GHz in Table 5 and Table 23 • Updated DINV[3:0]# and BPM[3]# pin direction	March 2004

1 Introduction

This document provides electrical, mechanical, and thermal specifications for the Intel[®] Pentium[®] M processor.

The Intel Pentium M processor is offered at the following core frequencies:

- 1.30 GHz
- 1.40 GHz
- 1.50 GHz
- 1.60 GHz
- 1.70 GHz

The Low Voltage Intel Pentium M processor is offerred at the following core frequencies:

- 1.10 GHz
- 1.20 GHz
- 1.30 GHz

The Ultra Low Voltage Intel Pentium M processor is offered at the following core frequencies:

- 900 MHz
- 1.00 GHz
- 1.10 GHz

Key features of the Intel Pentium M processor incldue:

- Supports Intel®Architecture with Dynamic Execution
- High performance, low-power core
- On-die, primary 32-kB instruction cache and 32-kB write-back data cache
- On-die, 1-MB second level cache with Advanced Transfer Cache Architecture
- Advanced Branch Prediction and Data Prefetch Logic
- Streaming SIMD Extensions 2 (SSE2) enable break-through levels of performance in multimedia applications including 3D graphics, video decoding/encoding, and speech recognition.
- 400-MHz, Source-Synchronous processor system bus to improve performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X).
- Advanced Power Management features including Enhanced Intel SpeedStep[®] technology
- Micro-FCPGA and Micro-FCBGA packaging technologies
- Manufactured on Intel's advanced 0.13 micron process technology with copper interconnect.
- Support for MMXTM technology
- Internet Streaming SIMD instructions and full compatibility with IA-32 software.

- Micro-op Fusion and Advanced Stack Management that reduce the number of micro-ops handled by the processor.
- Advanced branch prediction architecture that significantly reduces the number of mispredicted branches.
- Double-precision floating-point instructions enhance performance for applications that require
 greater range and precision, including scientific and engineering applications and advanced 3D
 geometry techniques, such as ray tracing.

Note: The term AGTL+ has been used for Assisted Gunning Transceiver Logic technology on other Intel products.

The Intel Pentium M processor is offered in two packages: a socketable Micro Flip-Chip Pin Grid Array (Micro-FCPGA) and a surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA) package technology. The Micro-FCPGA package plugs into a 479-hole, surface-mount, zero insertion force (ZIF) socket, which is referred to as the mPGA479M socket.

1.1 Terminology

A "#" symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as *address* or *data*), the "#" symbol implies that the signal is inverted. For example, D[3:0] = "HLHL" refers to a hex "A", and D[3:0]# = "LHLH" also refers to a hex "A" (H= High logic level, L= Low logic level).

"System Bus" refers to the interface between the processor and system core logic (also known as the chipset components).

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document. Also, please note that "platform design guides," when used throughout this document, refers to the following documents: Intel® 855PM MHz Chipset Platform Design Guide and Intel® 855GM Chipset Platform Design Guide.

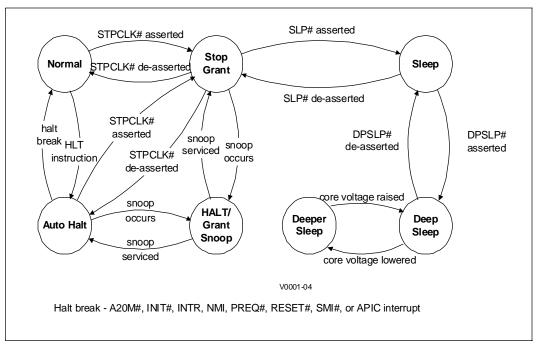
Table 1. References

Document	Order Number
Intel [®] 855PM Chipset Platform Design Guide	http://developer.intel.com
Intel® 855PM Chipset Datasheet	http://developer.intel.com
Intel® 855PM Chipset Specification Update	http://developer.intel.com
Intel® 855GM Chipset Platform Design Guide	http://developer.intel.com
Intel® 855GM Chipset Datasheet	http://developer.intel.com
Intel® 855GM Chipset Specification Update	http://developer.intel.com
Intel [®] Pentium [®] M Processor Specification Update	http://developer.intel.com
Intel® Architecture Software Developer's Manual	http://developer.intel.com
Volume I: Basic Architecture	
Volume II: Instruction Set Reference	
Volume III: System Programming Guide	
ITP700 Debug Port Design Guide	http://developer.intel.com

NOTE: Contact your Intel representative for the latest revision and order number of this document.

Introduction

This page intentionally left blank.



2 Low Power Features

2.1 Clock Control and Low Power States

The Intel Pentium M processor supports the AutoHALT, Stop-Grant, Sleep, Deep Sleep, and Deeper Sleep states for optimal power management. See Figure 1 for a visual representation of the processor low-power states.

Figure 1. Clock Control States

2.1.1 Normal State

This is the normal operating state for the processor.

2.1.2 AutoHALT Powerdown State

AutoHALT is a low-power state entered when the processor executes the HALT instruction. The processor transitions to the Normal state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or PSB interrupt message. RESET# will cause the processor to immediately initialize itself.

A System Management Interrupt (SMI) handler will return execution to either Normal state or the AutoHALT Powerdown state. See the *Intel Architecture Software Developer's Manual, Volume III: System Programmer's Guide* for more information.

The system can generate a STPCLK# while the processor is in the AutoHALT Powerdown state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in AutoHALT Powerdown state, the processor will process bus snoops. Stop-Grant State

When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop-Grant Acknowledge special bus cycle.

Since the AGTL+ signal pins receive power from the system bus, these pins should not be driven (allowing the level to return to $V_{\rm CCP}$) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the system bus should be driven to the inactive state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the de-assertion of SLP#.

A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the system bus (see Section 2.1.3). A transition to the Sleep state (see Section 2.1.4) will occur with the assertion of the SLP# signal.

While in the Stop-Grant state, SMI#, INIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal state. Only one occurrence of each event will be recognized upon return to the Normal state.

While in Stop-Grant state, the processor will process snoops on the system bus and it will latch interrupts delivered on the system bus.

The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that it should return the processor to the Normal state

2.1.3 HALT/Grant Snoop State

The processor will respond to snoop or interrupt transactions on the system bus while in Stop-Grant state or in AutoHALT Power Down state. During a snoop or interrupt transaction, the processor enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the system bus has been serviced (whether by the processor or another agent on the system bus) or the interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will return to the Stop-Grant state or AutoHALT Power Down state, as appropriate.

2.1.4 Sleep State

The Sleep state is a low power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can only be entered from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state upon the assertion of the SLP# signal. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state are out of specification and may result in unapproved operation.

Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will cause unpredictable behavior.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the system bus while the processor is in Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the Reset sequence.

While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state by asserting the DPSLP# pin. (See Section 2.1.5.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous system bus event needs to occur.

2.1.5 Deep Sleep State

Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings. BCLK stop/restart timings on Intel 855PM and Intel 855GM chipset-based platforms are as follows:

- Deep Sleep entry DPSLP# and CPU_STP# are asserted simultaneously. The platform clock chip will stop/tristate BCLK within 2 BCLKs +/- a few nanoseconds.
- Deep Sleep exit DPSLP# and CPU_STP# are deasserted simultaneously. The platform clock chip will drive BCLK to differential DC levels within 2-3 ns and starts toggling BCLK 2-6 BCLK periods later.

To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-started after DPSLP# deassertion as described above. A period of 30 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.

While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the system bus while the processor is in Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

2.1.6 Deeper Sleep State

The Deeper Sleep state is the lowest power state the processor can enter. This state is functionally identical to the Deep Sleep state but at a lower core voltage. The control signals to the voltage regulator to initiate a transition to the Deeper Sleep state are provided on the platform. Please refer to the platform design guides for details.

2.2 Enhanced Intel SpeedStep[®] Technology

The Intel Pentium M processor features Enhanced Intel SpeedStep® technology. Unlike previous implementations of Intel SpeedStep technology, this technology enables the processor to switch between multiple frequency and voltage points instead of two. This will enable superior performance with optimal power savings. Switching between states is software controlled unlike previous implementations where the GHI# pin is used to toggle between two states. The following are the key features of Enhanced Intel SpeedStep technology:

- Multiple voltage/frequency operating points provide optimal performance at the lowest power.
- Voltage/Frequency selection is software controlled by writing to processor MSR's (Model Specific Registers) thus eliminating chipset dependency.

- If the target frequency is higher than the current frequency, Vcc is ramped up by placing a new value on the VID pins and the PLL then locks to the new frequency.
- If the target frequency is lower than the current frequency, the PLL locks to the new frequency and the Vcc is changed through the VID pin mechanism.
- Software transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until its completion.
- The processor controls voltage ramp rates internally to ensure glitch free transitions.
- Low transition latency and large number of transitions possible per second.
 - Processor core (including L2 cache) is unavailable for up to 10 μs during the frequency transition
 - The bus protocol (BNR# mechanism) is used to block snooping
- No bus master arbiter disable required prior to transition and no processor cache flush necessary.
- Improved Intel Thermal Monitor mode.
 - When the on-die thermal sensor indicates that the die temperature is too high, the processor can automatically perform a transition to a lower frequency/voltage specified in a software programmable MSR.
 - The processor waits for a fixed time period. If the die temperature is down to acceptable levels, an up transition to the previous frequency/voltage point occurs.
 - An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling better system level thermal management.

2.3 Processor System Bus Low Power Enhancements

The Intel Pentium M processor incorporates the following processor system bus low power enhancements:

- Dynamic FSB power down
- BPRI# control for address and control input buffers
- Dynamic on-die termination disabling
- Low VCCP (I/O termination voltage)

The Intel Pentium M processor incorporates the DPWR# signal that controls the Data Bus input buffers on the processor. The DPWR# signal disables the buffers when not used and activates them only when data bus activity occurs, resulting in significant power savings with no performance impact. BPRI# control also allows the processor address and control input buffers to be turned off when the BPRI# signal is inactive. The On Die Termination on the processor PSB buffers is disabled when the signals are driven low, resulting in additional power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times.

2.4 Processor Power Status Indicator (PSI#) Signal

The Intel Pentium M processor incorporates the PSI# signal that is asserted when the processor is in a low power (Deep Sleep or Deeper Sleep) state. This signal is asserted upon Deep Sleep entry and deasserted upon exit. PSI# can be used to improve the light load efficiency of the voltage regulator, resulting in platform power savings and extended battery life. PSI# can also be used to simplify voltage regulator designs since it removes the need for integrated 100 µs timers required to mask the PWRGOOD signal during Deeper Sleep transitions. It also reduces PWRGOOD monitoring requirements in the Deeper Sleep state.

This page intentionally left blank.

3 Electrical Specifications

3.1 System Bus and GTLREF

The Intel Pentium M processor system bus signals use Advanced Gunning Transceiver Logic (AGTL+) signalling technology, a variant of GTL+ signalling technology with low power enhancements. This signalling technology provides improved noise margins and reduced ringing through low-voltage swings and controlled edge rates. The termination voltage level for the Intel Pentium M processor AGTL+ signals is VCCP = 1.05 V (nominal). Due to speed improvements to data and address bus, signal integrity and platform design methods have become more critical than with previous processor families. Design guidelines for the Intel Pentium M processor system bus are detailed in the platform design guides.

The AGTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board. Termination resistors are provided on the processor silicon and are terminated to its I/O voltage (VCCP). The Intel 855PM and Intel 855GM chipsets also provide on-die termination, thus eliminating the need to terminate the bus on the system board for most AGTL+ signals.

Refer to the platform design guides for board level termination resistor requirements.

The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the system bus, including trace lengths, is highly recommended when designing a system.

3.2 Power and Ground Pins

For clean on-chip power distribution, the Intel Pentium M processor has a large number of $V_{\rm CC}$ (power) and $V_{\rm SS}$ (ground) inputs. All power pins must be connected to $V_{\rm CC}$ power planes while all $V_{\rm SS}$ pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. Please refer to the platform design guides for more details. The processor $V_{\rm CC}$ pins must be supplied the voltage determined by the VID (Voltage ID) pins.

3.3 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large average current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Care must be taken in the board design to ensure that the voltage provided to the processor remains within the specifications listed in Table 5. Failure to do so can result in timing violations or reduced lifetime of the component. For further information and design guidelines, refer to the platform design guides.

3.3.1 V_{CC} Decoupling

Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR) and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the large current swings when the part is powering on, or entering/exiting low-power states, must be provided by the voltage regulator solution. For more details on decoupling recommendations, please refer to the platform design guides. It is **strongly recommended** that the layout and decoupling recommendations in the design guides be followed.

3.3.2 System Bus AGTL+ Decoupling

Intel Pentium M processors integrate signal termination on the die as well as incorporate high frequency decoupling capacitance on the processor package. Decoupling must also be provided by the system motherboard for proper AGTL+ bus operation. For more information, refer to the platform design guides.

3.3.3 System Bus Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the processor. As in previous generation processors, the Intel Pentium M processor core frequency is a multiple of the BCLK[1:0] frequency. In regards to processor clocking, the Intel Pentium M processor uses a differential clocking implementation.

3.4 Voltage Identification

The Intel Pentium M processor uses six voltage identification pins, VID[5:0], to support automatic selection of power supply voltages. The VID pins for the Intel Pentium M processor are CMOS outputs driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding to the state of VID[5:0]. A "1" in this refers to a high-voltage level and a "0" refers to low-voltage level.

Table 2. Voltage Identification Definition

VID				v _{cc}	VID					V _{CC}			
5	4	3	2	1	0	'	5	4	3	2	1	0	,
0	0	0	0	0	0	1.708	1	0	0	0	0	0	1.196
0	0	0	0	1	0	1.676	1	0	0	0	1	0	1.164
0	0	0	0	1	1	1.660	1	0	0	0	1	1	1.148
0	0	0	1	0	0	1.644	1	0	0	1	0	0	1.132
0	0	0	1	0	1	1.628	1	0	0	1	0	1	1.116
0	0	0	1	1	0	1.612	1	0	0	1	1	0	1.100
0	0	0	1	1	1	1.596	1	0	0	1	1	1	1.084
0	0	1	0	0	0	1.580	1	0	1	0	0	0	1.068
0	0	1	0	0	1	1.564	1	0	1	0	0	1	1.052
0	0	1	0	1	0	1.548	1	0	1	0	1	0	1.036
0	0	1	0	1	1	1.532	1	0	1	0	1	1	1.020
0	0	1	1	0	0	1.516	1	0	1	1	0	0	1.004
0	0	1	1	0	1	1.500	1	0	1	1	0	1	0.988
0	0	1	1	1	0	1.484	1	0	1	1	1	0	0.972
0	0	1	1	1	1	1.468	1	0	1	1	1	1	0.956
0	1	0	0	0	0	1.452	1	1	0	0	0	0	0.940
0	1	0	0	0	1	1.436	1	1	0	0	0	1	0.924
0	1	0	0	1	0	1.420	1	1	0	0	1	0	0.908
0	1	0	0	1	1	1.404	1	1	0	0	1	1	0.892
0	1	0	1	0	0	1.388	1	1	0	1	0	0	0.876
0	1	0	1	0	1	1.372	1	1	0	1	0	1	0.860
0	1	0	1	1	0	1.356	1	1	0	1	1	0	0.844
0	1	0	1	1	1	1.340	1	1	0	1	1	1	0.828
0	1	1	0	0	0	1.324	1	1	1	0	0	0	0.812
0	1	1	0	0	1	1.308	1	1	1	0	0	1	0.796
0	1	1	0	1	0	1.292	1	1	1	0	1	0	0.780
0	1	1	0	1	1	1.276	1	1	1	0	1	1	0.764
0	1	1	1	0	0	1.260	1	1	1	1	0	0	0.748
0	1	1	1	0	1	1.244	1	1	1	1	0	1	0.732
0	1	1	1	1	0	1.228	1	1	1	1	1	0	0.716
0	1	1	1	1	1	1.212	1	1	1	1	1	1	0.700

3.5 Catastrophic Thermal Protection

The Intel Pentium M processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, that halts all processor internal clocks and activity, leakage current can be high enough such that the processor cannot be protected in all conditions without the removal of power to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway.

3.6 Signal Terminations and Unused Pins

All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to $V_{\rm CC}$, $V_{\rm SS}$, or to any other signal (including each other) can result in component malfunction or incompatibility with future Intel Pentium M processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (V_{SS}) . Unused outputs can be left unconnected.

For details on signal terminations, please refer to the platform design guides. TAP signal termination requirements are also discussed in *ITP700 Debug Port Design Guide*.

The TEST1, TEST2, and TEST3 pins must be left unconnected but should have a stuffing option connection to V_{SS} separately using 1-k Ω , pull-down resistors.

3.7 System Bus Signal Groups

To simplify the following discussion, the system bus signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.

Table 3 identifies which signals are common clock, source synchronous, and asynchronous. Common clock signals which are dependent upon the crossing of the rising edge of BCLK0 and the falling edge of BCLK1. Source synchronous signals are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle.

System Bus Pin Groups Table 3.

Signal Group	Туре	Signals				
AGTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#, TRDY#				
AGTL+ Common Clock I/O	Synchronous to BCLK[1:0]	ADS#, BNR#, BPM[3:0]# ¹ , BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY# ¹				
		Signals Associated Strobe				
		REQ[4:0]#, A[16:3]# ADSTB[0]#				
	Synchronous	A[31:17]# ADSTB[1]#				
AGTL+ Source Synchronous I/O	to associated strobe	D[15:0]#, DINV0# DSTBP0#, DSTBN0#				
		D[31:16]#, DINV1# DSTBP1#, DSTBN1#				
		D[47:32]#, DINV2# DSTBP2#, DSTBN2#				
		D[63:48]#, DINV3# DSTBP3#, DSTBN3#				
AGTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#				
CMOS Input	Asynchronous	A20M#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/ NMI, PWRGOOD, SMI#, SLP#, STPCLK#				
Open Drain Output	Asynchronous	FERR#, IERR#, PROCHOT#, THERMTRIP#				
CMOS Output	Asynchronous	PSI#, VID[5:0]				
CMOS Input	Synchronous to TCK	TCK, TDI, TMS, TRST#				
Open Drain Output	Synchronous to TCK	TDO				
System Bus Clock	Clock	BCLK[1:0], ITP_CLK[1:0]				
Power/Other		COMP[3:0], DBR# ² , GTLREF, RSVD, TEST3, TEST2, TEST1, THERMDA, THERMDC, $V_{\rm CC}$, $V_{\rm CCA}$ [3:0], $V_{\rm CCP}$, $V_{\rm CCQ}$ [1:0], $V_{\rm CC}$ _SENSE, $V_{\rm SS}$, $V_{\rm SS}$ _SENSE				

CMOS Signals 3.8

CMOS input signals are shown in Table 3. Legacy output FERR#, IERR# and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. All of the CMOS signals are required to be asserted for at least three BCLKs in order for the chipset to recognize them. See Section 3.10 for the DC specifications of the CMOS signal groups.

^{1.} BPM[2:0]# and PRDY# are AGTL+ output only signals.
2. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects

3.9 Maximum Ratings

Table 4 lists the processor's maximum environmental stress ratings. The processor should not receive a clock while subjected to these conditions. Functional operating parameters are listed in the DC tables. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although the processor includes protective circuitry to resist damage from Electro Static Discharge (ESD), system designers must always take precautions to avoid high static voltages or electric fields.

Table 4. Processor DC Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
TSTORAGE	Processor storage temperature	-40	85	°C	2
V _{CC}	Any processor supply voltage with respect to V _{SS}	-0.3	1.75	V	1
V _{inAGTL+}	AGTL+ buffer DC input voltage with respect to V _{ss}	-0.1	1.75	V	1, 2
V _{inAsynch_CMOS}	CMOS buffer DC input voltage with respect to V _{SS}	-0.1	1.75	V	1, 2

NOTES:

- 1. This rating applies to any processor pin.
- 2. Contact Intel for storage requirements in excess of one year.

3.10 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Table 15 for the pin signal definitions and signal pin assignments. Most of the signals on the processor system bus are in the AGTL+ signal group and the DC specifications for these signals are also listed. DC specifications for the CMOS group are listed in Table 16.

Table 5 through Table 16 list the DC specifications for the Intel Pentium M processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency (HFM) and Lowest Frequency Modes (LFM) refer to the highest and lowest core operating frequencies supported on the processor. Active Mode load line specifications apply in all states except in the Deep Sleep and Deeper Sleep states. V_{CC,BOOT} is the default voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the Intel Pentium M processor are at Tjunction = 100°C. Care should be taken to read all notes associated with each parameter.

Table 5. Voltage and Current Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{CC17}	Intel Pentium M processor 1.70 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 1.70 GHz 1.40 GHz 1.20 GHz 1.00 GHz		1.484 1.308 1.228 1.116		V	1, 2
	800 MHz 600 MHz		1.004 0.956			
V _{CC16}	Intel Pentium M processor 1.60 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 1.60 GHz 1.40 GHz 1.20 GHz 1.00 GHz 800 MHz 600 MHz		1.484 1.420 1.276 1.164 1.036 0.956		V	1, 2
V _{CC15}	Intel Pentium M processor 1.50 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 1.50 GHz 1.40 GHz 1.20 GHz 1.00 GHz 800 MHz 600 MHz		1.484 1.452 1.356 1.228 1.116 0.956		V	1, 2
V _{CC14}	Intel Pentium M processor 1.40 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 1.40 GHz 1.20 GHz 1.00 GHz 800 MHz 600 MHz		1.484 1.436 1.308 1.180 0.956		V	1, 2
V _{CC13}	Intel Pentium M processor 1.30 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 1.30 GHz 1.20 GHz 1.00 GHz 800 MHz 600 MHz		1.388 1.356 1.292 1.260 0.956		V	1, 2

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{CCLV13}	Low Voltage Intel Pentium M processor 1.30 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 1.30 GHz 1.20 GHz 1.10 GHz 200 MHz		1.180 1.164 1.100 1.020		V	1,2
	900 MHz 800 MHz 600 MHz		1.004 0.988 0.956			
	Low Voltage Intel Pentium M processor 1.20 GHz					
	Core V _{CC} for Enhanced Intel SpeedStep technology operating points:					
V _{CCLV12}	1.20 GHz 1.10 GHz 1.00 GHz 900 MHz 800 MHz 600 MHz		1.180 1.164 1.100 1.020 1.004 0.956		V	1,2
	Low Voltage Intel Pentium M processor 1.10 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating					
V _{CCLV11}	points: 1.10 GHz 1.00 GHz 900 MHz 800 MHz 600 MHz		1.180 1.164 1.100 1.020 0.956		V	1, 2
V	Ultra Low Voltage Intel Pentium M processor 1.10 GHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points:					
V _{CCULV11}	1.10 GHz 1.00 GHz 900 MHz 800 MHz 600 MHz		1.004 0.988 0.972 0.956 0.844			
	Ultra Low Voltage Intel Pentium M processor 1.00 GHz					
V _{CCULV10}	Core V _{CC} for Enhanced Intel SpeedStep technology operating points:		1.004		V	1, 2
	1.00 GHz 900 MHz 800 MHz 600 MHz		0.988 0.972 0.844			

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{CCULV9}	Ultra Low Voltage Intel Pentium M processor 900 MHz Core V _{CC} for Enhanced Intel SpeedStep technology operating points: 900 MHz 800 MHz 600 MHz		1.004 0.988 0.844		V	1, 2
V _{CC,BOOT}	Default V _{CC} Voltage for initial power up	1.14	1.20	1.26	V	2
V _{CCP}	AGTL+ Termination Voltage	0.997	1.05	1.102	V	2
V _{CCA}	PLL Supply Voltage	1.71	1.8	1.89	V	2
V _{CCDPRSLP,TR}	Transient Deeper Sleep voltage	0.695	0.748	0.795	V	2
V _{CCDPRSLP,ST}	Static Deeper Sleep voltage	0.705	0.748	0.785	V	2
I _{CCDES}	I _{CC} for Intel Pentium M processors Recommended Design Target			25	А	5
I _{CC}	I _{CC} for Intel Pentium M processors by Frequency/Voltage: 600 MHz & 0.844 V 600 MHz & 0.956 V 900 MHz & 1.004 V 1.00 GHz & 1.004 V 1.10 GHz & 1.180 V 1.20 GHz & 1.180 V 1.30 GHz & 1.180 V 1.30 GHz & 1.388 V 1.40 GHz & 1.484 V 1.50 GHz & 1.484 V 1.60 GHz & 1.484 V			5 6.8 9 9 9 12 12 12.5 19 18 21 21 21	А	3
I _{AH,} I _{SGNT}	I _{CC} Auto-Halt & Stop-Grant at: 0.844 V (ULV Pentium M) 0.956 V 1.004 V (ULV Pentium M) 1.180 V 1.388 V (Pentium M 1.30 GHz) 1.484 V			1.8 3.3 2.7 4.7 9.4 8.6	A	4
I _{SLP}	I _{CC} Sleep at: 0.844 V (ULV Pentium M) 0.956 V 1.004 V (ULV Pentium M) 1.180 V 1.388 V (Pentium M 1.30 GHz) 1.484 V			1.7 3.3 2.6 4.6 9.2 8.4	А	4
I _{DSLP}	I _{CC} Deep Sleep at: 0.844 V (ULV Pentium M) 0.956 V 1.004 V (ULV Pentium M) 1.180 V 1.388 V (Pentium M 1.30 GHz) 1.484 V			1.6 3.1 2.3 4.2 8.8 7.8	А	4
I _{DPRSLP}	I _{CC} Deeper Sleep			1.8	Α	4

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{DPRSLPULV}	I _{CC} Deeper Sleep (ULV Intel Pentium M only)			1.2	Α	4
dl _{CC/DT}	V _{CC} power supply current slew rate			0.5	A/ns	6, 7
I _{CCA}	I _{CC} for V _{CCA} supply			120	mA	
I _{CCP}	I _{CC} for V _{CCP} supply			2.5	Α	

NOTES:

- 1. The typical values shown are the VID encoded voltages. Static and Ripple tolerances (for minimum and maximum voltages) are defined in the load line tables i.e. Table 6 through Table 13.
- 2. The voltage specifications are assumed to be measured at a via on the motherboard's opposite side of the processor's socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-Mohm minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- Specified at V_{CC,STATIC} (nominal) under maximum signal loading conditions.
 Specified at the VID voltage.
- The I_{CCDES}(max) specification comprehends future processor HFM frequencies. Platforms should be designed to this specification.
- 6. Based on simulations and averaged over the duration of any change in current. Specified by design/ characterization at nominal V_{CC}. Not 100% tested.
- 7. Measured at the bulk capacitors on the motherboard.

Table 6. Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Active State)

	High	est Fre		Mode: \et = 0%	VID = 1.4	84 V,	Lowest Frequency Mode: VID = 0.956 V, Offset = 0%						
Mode		v v	STA	TIC	Rip	ple		v v	STA	TIC	Rip	ple	
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	
	0	1.484	1.462	1.506	1.452	1.516	0.0	0.956	0.942	0.970	0.932	0.980	
	0.9	1.481	1.459	1.503	1.449	1.513	0.4	0.955	0.941	0.969	0.931	0.979	
	1.9	1.478	1.456	1.501	1.446	1.511	0.7	0.954	0.940	0.968	0.930	0.978	
	2.8	1.476	1.453	1.498	1.443	1.508	1.1	0.953	0.938	0.967	0.928	0.977	
	3.7	1.473	1.451	1.495	1.441	1.505	1.4	0.952	0.937	0.966	0.927	0.976	
	4.6	1.470	1.448	1.492	1.438	1.502	1.8	0.951	0.936	0.965	0.926	0.975	
	5.6	1.467	1.445	1.490	1.435	1.500	2.1	0.950	0.935	0.964	0.925	0.974	
	6.5	1.465	1.442	1.487	1.432	1.497	2.5	0.948	0.934	0.963	0.924	0.973	
	7.4	1.462	1.440	1.484	1.430	1.494	2.9	0.947	0.933	0.962	0.923	0.972	
	8.3	1.459	1.437	1.481	1.427	1.491	3.2	0.946	0.932	0.961	0.922	0.971	
	9.3	1.456	1.434	1.478	1.424	1.488	3.6	0.945	0.931	0.960	0.921	0.970	
	10.2	1.453	1.431	1.476	1.421	1.486	3.9	0.944	0.930	0.959	0.920	0.969	
	11.1	1.451	1.428	1.473	1.418	1.483	4.3	0.943	0.929	0.957	0.919	0.967	
ACTIVE	12.0	1.448	1.426	1.470	1.416	1.480	4.7	0.942	0.928	0.956	0.918	0.966	
ACT	13.0	1.445	1.423	1.467	1.413	1.477	5.0	0.941	0.927	0.955	0.917	0.965	
	13.9	1.442	1.420	1.465	1.410	1.475	5.4	0.940	0.926	0.954	0.916	0.964	
	14.8	1.440	1.417	1.462	1.407	1.472	5.7	0.939	0.924	0.953	0.914	0.963	
	15.7	1.437	1.415	1.459	1.405	1.469	6.1	0.938	0.923	0.952	0.913	0.962	
	16.7	1.434	1.412	1.456	1.402	1.466	6.4	0.937	0.922	0.951	0.912	0.961	
	17.6	1.431	1.409	1.453	1.399	1.463	6.8	0.936	0.921	0.950	0.911	0.960	
	18.5	1.428	1.406	1.451	1.396	1.461							
	19.4	1.426	1.403	1.448	1.393	1.458							
	20.4	1.423	1.401	1.445	1.391	1.455							
	21.3	1.420	1.398	1.442	1.388	1.452							
	22.2	1.417	1.395	1.440	1.385	1.450							
	23.1	1.415	1.392	1.437	1.382	1.447							
	24.1	1.412	1.390	1.434	1.380	1.444							
	25.0	1.409	1.387	1.431	1.377	1.441							

Figure 2. Illustration of Active State V_{CC} Static and Ripple Tolerances (Highest Frequency Mode)

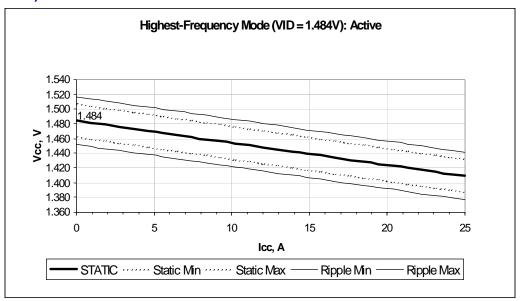


Table 7. Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Deep Sleep State)

		ghest Fre		Mode: V = 1.2%	ID = 1.48	34 V,	Lowest Frequency Mode: VID = 0.956 V, Offset = 1.2%						
Mode		V _{CC} , V	STA	ATIC	Ripple		Ι Λ	v _{cc} , v	STATIC		Ripple		
	I _{CC} , A	CC, V	Min	Max	Min	Max	I _{CC} , A	• CC; •	Min	Max	Min	Max	
	0.0	1.466	1.444	1.488	1.434	1.498	0.0	0.945	0.930	0.959	0.920	0.969	
	0.5	1.465	1.442	1.487	1.432	1.497	0.2	0.944	0.930	0.958	0.920	0.968	
	1.0	1.463	1.441	1.485	1.431	1.495	0.4	0.943	0.929	0.958	0.919	0.968	
	1.6	1.462	1.439	1.484	1.429	1.494	0.6	0.943	0.928	0.957	0.918	0.967	
	2.1	1.460	1.438	1.482	1.428	1.492	0.8	0.942	0.928	0.956	0.918	0.966	
	2.6	1.458	1.436	1.481	1.426	1.491	1.0	0.941	0.927	0.956	0.917	0.966	
Q	3.1	1.457	1.435	1.479	1.425	1.489	1.2	0.941	0.926	0.955	0.916	0.965	
Sleep	3.6	1.455	1.433	1.478	1.423	1.488	1.4	0.940	0.926	0.955	0.916	0.965	
Deep	4.2	1.454	1.431	1.476	1.421	1.486	1.7	0.940	0.925	0.954	0.915	0.964	
ă	4.7	1.452	1.430	1.474	1.420	1.484	1.9	0.939	0.925	0.953	0.915	0.963	
	5.2	1.451	1.428	1.473	1.418	1.483	2.1	0.938	0.924	0.953	0.914	0.963	
	5.7	1.449	1.427	1.471	1.417	1.481	2.3	0.938	0.923	0.952	0.913	0.962	
	6.2	1.447	1.425	1.470	1.415	1.480	2.5	0.937	0.923	0.951	0.913	0.961	
	6.8	1.446	1.424	1.468	1.414	1.478	2.7	0.936	0.922	0.951	0.912	0.961	
	7.3	1.444	1.422	1.467	1.412	1.477	2.9	0.936	0.922	0.950	0.912	0.960	
	7.8	1.443	1.421	1.465	1.411	1.475	3.1	0.936	0.921	0.950	0.911	0.960	

Figure 3. Illustration of Deep Sleep State Voltage Tolerances (Lowest Frequency Mode)

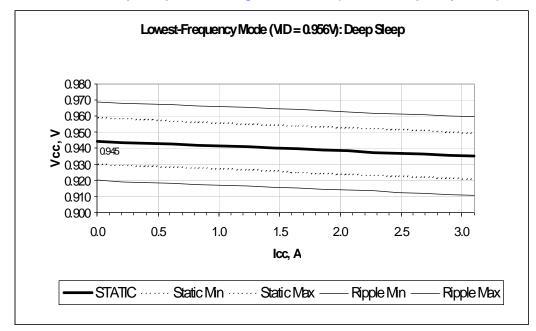


Table 8. Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.388 V (Active State)

	High	est Fre		Mode: \ et = 0%	VID = 1.3	388 V,	Lowest Frequency Mode: VID = 0.956 V, Offset = 0%						
Mode	V A	v v	STA	TIC	Rip	ple		v v	STA	TIC	Rip	ple	
	V _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	
	0	1.388	1.367	1.409	1.357	1.419	0.0	0.956	0.942	0.970	0.932	0.980	
	0.9	1.385	1.364	1.406	1.354	1.416	0.4	0.955	0.941	0.969	0.931	0.979	
	1.9	1.382	1.362	1.403	1.352	1.413	0.7	0.954	0.940	0.968	0.930	0.978	
	2.8	1.380	1.359	1.400	1.349	1.410	1.1	0.953	0.938	0.967	0.928	0.977	
	3.7	1.377	1.356	1.398	1.346	1.408	1.4	0.952	0.937	0.966	0.927	0.976	
	4.6	1.374	1.353	1.395	1.343	1.405	1.8	0.951	0.936	0.965	0.926	0.975	
	5.6	1.371	1.351	1.392	1.341	1.402	2.1	0.950	0.935	0.964	0.925	0.974	
	6.5	1.369	1.348	1.389	1.338	1.399	2.5	0.948	0.934	0.963	0.924	0.973	
	7.4	1.366	1.345	1.387	1.335	1.397	2.9	0.947	0.933	0.962	0.923	0.972	
	8.3	1.363	1.342	1.384	1.332	1.394	3.2	0.946	0.932	0.961	0.922	0.971	
	9.3	1.360	1.339	1.381	1.329	1.391	3.6	0.945	0.931	0.960	0.921	0.970	
	10.2	1.357	1.337	1.378	1.327	1.388	3.9	0.944	0.930	0.959	0.920	0.969	
	11.1	1.355	1.334	1.375	1.324	1.385	4.3	0.943	0.929	0.957	0.919	0.967	
ACTIVE	12.0	1.352	1.331	1.373	1.321	1.383	4.7	0.942	0.928	0.956	0.918	0.966	
ACT	13.0	1.349	1.328	1.370	1.318	1.380	5.0	0.941	0.927	0.955	0.917	0.965	
	13.9	1.346	1.326	1.367	1.316	1.377	5.4	0.940	0.926	0.954	0.916	0.964	
	14.8	1.344	1.323	1.364	1.313	1.374	5.7	0.939	0.924	0.953	0.914	0.963	
	15.7	1.341	1.320	1.362	1.310	1.372	6.1	0.938	0.923	0.952	0.913	0.962	
	16.7	1.338	1.317	1.359	1.307	1.369	6.4	0.937	0.922	0.951	0.912	0.961	
	17.6	1.335	1.314	1.356	1.304	1.366	6.8	0.936	0.921	0.950	0.911	0.960	
	18.5	1.332	1.312	1.353	1.302	1.363							
	19.4	1.330	1.309	1.350	1.299	1.360							
	20.4	1.327	1.306	1.348	1.296	1.358							
	21.3	1.324	1.303	1.345	1.293	1.355							
	22.2	1.321	1.301	1.342	1.291	1.352							
	23.1	1.319	1.298	1.339	1.288	1.349							
	24.1	1.316	1.295	1.337	1.285	1.347							
	25.0	1.313	1.292	1.334	1.282	1.344							

Table 9. Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.388 V (Deep Sleep State)

		ghest Fro		Mode: V = 1.2%	ID =1.38	8 V,	Lowest Frequency Mode: VID = 0.956 V, Offset = 1.2%						
Mode		v v	STA	TIC	Rip	Ripple		v v	STATIC		Ripple		
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	
	0.0	1.371	1.351	1.392	1.341	1.402	0.0	0.945	0.930	0.959	0.920	0.969	
	0.6	1.370	1.349	1.390	1.339	1.400	0.2	0.944	0.930	0.958	0.920	0.968	
	1.2	1.368	1.347	1.389	1.337	1.399	0.4	0.943	0.929	0.958	0.919	0.968	
	1.8	1.366	1.345	1.387	1.335	1.397	0.6	0.943	0.928	0.957	0.918	0.967	
	2.3	1.364	1.343	1.385	1.333	1.395	0.8	0.942	0.928	0.956	0.918	0.966	
	2.9	1.363	1.342	1.383	1.332	1.393	1.0	0.941	0.927	0.956	0.917	0.966	
Q	3.5	1.361	1.340	1.382	1.330	1.392	1.2	0.941	0.926	0.955	0.916	0.965	
Slee	4.1	1.359	1.338	1.380	1.328	1.390	1.4	0.940	0.926	0.955	0.916	0.965	
Deep Sleep	4.7	1.357	1.336	1.378	1.326	1.388	1.7	0.940	0.925	0.954	0.915	0.964	
۵	5.3	1.356	1.335	1.376	1.325	1.386	1.9	0.939	0.925	0.953	0.915	0.963	
	5.9	1.354	1.333	1.375	1.323	1.385	2.1	0.938	0.924	0.953	0.914	0.963	
	6.5	1.352	1.331	1.373	1.321	1.383	2.3	0.938	0.923	0.952	0.913	0.962	
	7.0	1.350	1.329	1.371	1.319	1.381	2.5	0.937	0.923	0.951	0.913	0.961	
	7.6	1.348	1.328	1.369	1.318	1.379	2.7	0.936	0.922	0.951	0.912	0.961	
	8.2	1.347	1.326	1.368	1.316	1.378	2.9	0.936	0.922	0.950	0.912	0.960	
	8.8	1.345	1.324	1.366	1.314	1.376	3.1	0.936	0.921	0.950	0.911	0.960	

Table 10. Voltage Tolerances for Low Voltage Intel Pentium M Processors (Active State)

	High	est Fre		Mode: \(t = 0\)	VID = 1.1	180 V,	Lowest Frequency Mode: VID = 0.956 V, Offset = 0%						
Mode	V A	v v	STA	TIC	Rip	ple		v v	STA	TIC	Rip	ple	
	V _{CC} , A	VCC, V	Min	Max	Min	Max	ICC, A	v _{cc} , v	Min	Max	Min	Max	
	0	1.180	1.162	1.198	1.152	1.208	0.0	0.956	0.942	0.970	0.932	0.980	
	0.4	1.179	1.161	1.196	1.151	1.206	0.4	0.955	0.941	0.969	0.931	0.979	
	0.9	1.177	1.160	1.195	1.150	1.205	0.7	0.954	0.940	0.968	0.930	0.978	
	1.3	1.176	1.158	1.194	1.148	1.204	1.1	0.953	0.938	0.967	0.928	0.977	
	1.8	1.175	1.157	1.192	1.147	1.202	1.4	0.952	0.937	0.966	0.927	0.976	
	2.2	1.173	1.156	1.191	1.146	1.201	1.8	0.951	0.936	0.965	0.926	0.975	
	2.7	1.172	1.154	1.190	1.144	1.200	2.1	0.950	0.935	0.964	0.925	0.974	
	3.1	1.171	1.153	1.188	1.143	1.198	2.5	0.948	0.934	0.963	0.924	0.973	
	3.6	1.169	1.152	1.187	1.142	1.197	2.9	0.947	0.933	0.962	0.923	0.972	
	4.0	1.168	1.150	1.186	1.140	1.196	3.2	0.946	0.932	0.961	0.922	0.971	
	4.4	1.167	1.149	1.184	1.139	1.194	3.6	0.945	0.931	0.960	0.921	0.970	
	4.9	1.165	1.148	1.183	1.138	1.193	3.9	0.944	0.930	0.959	0.920	0.969	
	5.3	1.164	1.146	1.182	1.136	1.192	4.3	0.943	0.929	0.957	0.919	0.967	
ACTIVE	5.8	1.163	1.145	1.180	1.135	1.190	4.7	0.942	0.928	0.956	0.918	0.966	
ACI	6.2	1.161	1.144	1.179	1.134	1.189	5.0	0.941	0.927	0.955	0.917	0.965	
	6.7	1.160	1.142	1.178	1.132	1.188	5.4	0.940	0.926	0.954	0.916	0.964	
	7.1	1.159	1.141	1.176	1.131	1.186	5.7	0.939	0.924	0.953	0.914	0.963	
	7.6	1.157	1.140	1.175	1.130	1.185	6.1	0.938	0.923	0.952	0.913	0.962	
	8.0	1.156	1.138	1.174	1.128	1.184	6.4	0.937	0.922	0.951	0.912	0.961	
	8.4	1.155	1.137	1.172	1.127	1.182	6.8	0.936	0.921	0.950	0.911	0.960	
	8.9	1.153	1.136	1.171	1.126	1.181							
	9.3	1.152	1.134	1.170	1.124	1.180							
	9.8	1.151	1.133	1.168	1.123	1.178							
	10.2	1.149	1.132	1.167	1.122	1.177							
	10.7	1.148	1.130	1.166	1.120	1.176							
	11.1	1.147	1.129	1.164	1.119	1.174							
	11.6	1.145	1.128	1.163	1.118	1.173							
	12.0	1.144	1.126	1.162	1.116	1.172							

Table 11. Voltage Tolerances for Low Voltage Intel Pentium M Processors (Deep Sleep State)

		ghest Fre		Mode: V = 1.2%	ID = 1.18	80 V,	Lowest Frequency Mode: VID = 0.956 V, Offset = 1.2%							
Mode		v v	STA	ATIC	Rip	Ripple		v v	STA	ATIC	Ripple			
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max		
	0.0	1.166	1.148	1.184	1.138	1.194	0.0	0.945	0.930	0.959	0.920	0.969		
	0.3	1.165	1.147	1.183	1.137	1.193	0.2	0.944	0.930	0.958	0.920	0.968		
	0.6	1.164	1.146	1.182	1.136	1.192	0.4	0.943	0.929	0.958	0.919	0.968		
	0.8	1.163	1.146	1.181	1.136	1.191	0.6	0.943	0.928	0.957	0.918	0.967		
	1.1	1.162	1.145	1.180	1.135	1.190	0.8	0.942	0.928	0.956	0.918	0.966		
	1.4	1.162	1.144	1.179	1.134	1.189	1.0	0.941	0.927	0.956	0.917	0.966		
Q	1.7	1.161	1.143	1.179	1.133	1.189	1.2	0.941	0.926	0.955	0.916	0.965		
Sleep	2.0	1.160	1.142	1.178	1.132	1.188	1.4	0.940	0.926	0.955	0.916	0.965		
Deep	2.2	1.159	1.141	1.177	1.131	1.187	1.7	0.940	0.925	0.954	0.915	0.964		
۵	2.5	1.158	1.141	1.176	1.131	1.186	1.9	0.939	0.925	0.953	0.915	0.963		
	2.8	1.157	1.140	1.175	1.130	1.185	2.1	0.938	0.924	0.953	0.914	0.963		
	3.1	1.157	1.139	1.174	1.129	1.184	2.3	0.938	0.923	0.952	0.913	0.962		
	3.4	1.156	1.138	1.173	1.128	1.183	2.5	0.937	0.923	0.951	0.913	0.961		
	3.6	1.155	1.137	1.173	1.127	1.183	2.7	0.936	0.922	0.951	0.912	0.961		
	3.9	1.154	1.136	1.172	1.126	1.182	2.9	0.936	0.922	0.950	0.912	0.960		
	4.2	1.153	1.136	1.171	1.126	1.181	3.1	0.936	0.921	0.950	0.911	0.960		

Table 12. Voltage Tolerances for Ultra Low Voltage Intel Pentium M Processors (Active State)

	Highest Frequency Mode: VID = 1.004 VOffset = 0%						Lowest Frequency Mode: VID = 0.844 V, Offset = 0%						
Mode	V A	v v	STA	TIC	Rip	ople		v v	STA	TIC	Rip	ple	
	V _{CC} , A	VCC, V	Min	Max	Min	Max	Icc, A	V _{cc} , V	Min	Max	Min	Max	
	0	1.004	0.989	1.019	0.979	1.029	0.0	0.844	0.831	0.857	0.821	0.867	
	0.3	1.003	0.988	1.018	0.978	1.028	0.3	0.843	0.831	0.856	0.821	0.866	
	0.7	1.002	0.987	1.017	0.977	1.027	0.5	0.842	0.830	0.855	0.820	0.865	
	1.0	1.001	0.986	1.016	0.976	1.026	0.8	0.842	0.829	0.854	0.819	0.864	
	1.3	1.000	0.985	1.015	0.975	1.025	1.1	0.841	0.828	0.854	0.818	0.864	
	1.7	0.999	0.984	1.014	0.974	1.024	1.3	0.840	0.827	0.853	0.817	0.863	
	2.0	0.998	0.983	1.013	0.973	1.023	1.6	0.839	0.827	0.852	0.817	0.862	
	2.3	0.997	0.982	1.012	0.972	1.022	1.8	0.838	0.826	0.851	0.816	0.861	
	2.7	0.996	0.981	1.011	0.971	1.021	2.1	0.838	0.825	0.850	0.815	0.860	
	3.0	0.995	0.980	1.010	0.970	1.020	2.4	0.837	0.824	0.850	0.814	0.860	
	3.3	0.994	0.979	1.009	0.969	1.019	2.6	0.836	0.823	0.849	0.813	0.859	
	3.7	0.993	0.978	1.008	0.968	1.018	2.9	0.835	0.823	0.848	0.813	0.858	
	4.0	0.992	0.977	1.007	0.967	1.017	3.2	0.835	0.822	0.847	0.812	0.857	
ACTIVE	4.3	0.991	0.976	1.006	0.966	1.016	3.4	0.834	0.821	0.846	0.811	0.856	
ACT	4.7	0.990	0.975	1.005	0.965	1.015	3.7	0.833	0.820	0.846	0.810	0.856	
	5.0	0.989	0.974	1.004	0.964	1.014	3.9	0.832	0.820	0.845	0.810	0.855	
	5.3	0.988	0.973	1.003	0.963	1.013	4.2	0.831	0.819	0.844	0.809	0.854	
	5.7	0.987	0.972	1.002	0.962	1.012	4.5	0.831	0.818	0.843	0.808	0.853	
	6.0	0.986	0.971	1.001	0.961	1.011	4.7	0.830	0.817	0.842	0.807	0.852	
	6.3	0.985	0.970	1.000	0.960	1.010	5.0	0.829	0.816	0.842	0.806	0.852	
	6.7	0.984	0.969	0.999	0.959	1.009							
	7.0	0.983	0.968	0.998	0.958	1.008							
	7.3	0.982	0.967	0.997	0.957	1.007							
	7.7	0.981	0.966	0.996	0.956	1.006							
	8.0	0.980	0.965	0.995	0.955	1.005							
	8.3	0.979	0.964	0.994	0.954	1.004							
	8.7	0.978	0.963	0.993	0.953	1.003							
	9.0	0.977	0.962	0.992	0.952	1.002							

Table 13. Voltage Tolerances for Ultra Low Voltage Intel Pentium M Processors (Deep Sleep State)

	1	ghest Fre		Mode: V = 1.2%	ID = 1.00	04 V,	Lowest Frequency Mode: VID = 0.844 V, Offset = 1.2%							
Mode		v v	STA	TIC	Rip	ple		v v	STA	ATIC	Ripple			
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	v _{cc} , v	Min	Max	Min	Max		
	0.0	0.992	0.977	1.007	0.967	1.017	0.0	0.834	0.821	0.847	0.811	0.857		
	0.2	0.992	0.976	1.007	0.966	1.017	0.1	0.834	0.821	0.846	0.811	0.856		
	0.3	0.991	0.976	1.006	0.966	1.016	0.2	0.833	0.821	0.846	0.811	0.856		
	0.5	0.991	0.976	1.006	0.966	1.016	0.3	0.833	0.820	0.846	0.810	0.856		
	0.6	0.990	0.975	1.005	0.965	1.015	0.4	0.833	0.820	0.845	0.810	0.855		
	0.8	0.990	0.975	1.005	0.965	1.015	0.5	0.832	0.820	0.845	0.810	0.855		
۵	0.9	0.989	0.974	1.004	0.964	1.014	0.6	0.832	0.819	0.845	0.809	0.855		
Sleep	1.1	0.989	0.974	1.004	0.964	1.014	0.7	0.832	0.819	0.844	0.809	0.854		
Deep (1.2	0.988	0.973	1.003	0.963	1.013	0.9	0.831	0.819	0.844	0.809	0.854		
ă	1.4	0.988	0.973	1.003	0.963	1.013	1.0	0.831	0.818	0.844	0.808	0.854		
	1.5	0.987	0.972	1.002	0.962	1.012	1.1	0.831	0.818	0.843	0.808	0.853		
	1.7	0.987	0.972	1.002	0.962	1.012	1.2	0.830	0.818	0.843	0.808	0.853		
	1.8	0.986	0.971	1.002	0.961	1.012	1.3	0.830	0.817	0.843	0.807	0.853		
	2.0	0.986	0.971	1.001	0.961	1.011	1.4	0.830	0.817	0.842	0.807	0.852		
	2.1	0.986	0.970	1.001	0.960	1.011	1.5	0.829	0.817	0.842	0.807	0.852		
	2.3	0.985	0.970	1.000	0.960	1.010	1.6	0.829	0.816	0.842	0.806	0.852		

Table 14. System Bus Differential BCLK Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
V _L	Input Low Voltage		0		V	
V _H	Input High Voltage	0.660	0.710	0.850	V	
V _{CROSS}	Crossing Voltage	0.25	0.35	0.55	V	2
$\Delta V_{ extsf{CROSS}}$	Range of Crossing Points	N/A	N/A	0.140	V	6
V _{TH}	Threshold Region	V _{CROSS} -0.100		V _{CROSS} +0.100	V	3
lu	Input Leakage Current			± 100	μΑ	4
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	5

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1.
- 3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver switches. It includes input threshold hysteresis.
- 4. For Vin between 0 V and V_H.
- 5. Cpad includes die capacitance only. No package parasitics are included.
- 6. ΔV_{CROSS} is defined as the total variation of all crossing voltages as defined in note 2.

Table 15. AGTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
VCCP	I/O Voltage	0.997	1.05	1.102	V	
GTLREF	Reference Voltage	2/3 VCCP - 2%	2/3 VCCP	2/3 VCCP + 2%	V	5
VIH	Input High Voltage	GTLREF+0.1		VCCP+0.1	V	3,5
VIL	Input Low Voltage	-0.1		GTLREF-0.1	V	2
Vон	Output High Voltage		VCCP			5
R _{TT}	Termination Resistance	47	55	63	Ω	6
Ron	Buffer On Resistance	17.7	24.7	32.9	W	4
ILI	Input Leakage Current			± 100	μA	7
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	8

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
- 3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
- 4. This is the pull down driver resistance. Measured at 0.31*VCCP. R_{ON} (min) = 0.38*R_{TT}. R_{ON} (typ) = 0.45*R_{TT}.
- R_{ON} (max) = 0.52*R_{TT.}

 5. GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in these specifications is the instantaneous VCCP.
- 6. R_{TT} is the on-die termination resistance measured at V_{OL} of the AGTL+ output driver. Measured at 0.31*VCCP. R_{TT} is connected to VCCP on die.
 7. Specified with on die R_{TT} and R_{ON} are turned off.
 8. Cpad includes die capacitance only. No package parasitics are included.

Table 16. CMOS Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
VCCP	I/O Voltage	0.997	1.05	1.102	V	
VIL	Input Low Voltage CMOS	-0.1		0.3*VCCP	V	2
ViH	Input High Voltage	0.7*VCCP		VCCP+0.1	V	2
Vol	Output Low Voltage	-0.1	0	0.1*VCCP	V	2
Vон	Output High Voltage	0.9*VCCP	VCCP	VCCP+0.1	V	2
lol	Output Low Current	1.49		4.08	mA	3
Іон	Output High Current	1.49		4.08	mA	4
ILI	Leakage Current			± 100	μΑ	5
Cpad	Pad Capacitance	1.0	2.3	3.0	рF	6

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. The VCCP referred to in these specifications refers to instantaneous VCCP.
- 3. Measured at 0.1*VCCP.
- 4. Measured at 0.9*VCCP.
- 5. For Vin between 0V and VCCP. Measured when the driver is tristated.
- 6. Cpad includes die capacitance only. No package parasitics are included.

Table 17. Open Drain Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
Vон	Output High Voltage		VCCP		V	3
Vol	Output Low Voltage	0		0.20	V	
lol	Output Low Current	16		50	mA	2
I _{LO}	Leakage Current			± 200	μΑ	4
Cpad	Pad Capacitance	1.7	2.3	3.0	рF	5

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Measured at 0.2 V
- 3. V_{OH} is determined by value of the external pullup resistor to VCCP. Please refer to the design guide for details.
- 4. For Vin between 0 V and V_{OH}.
 5. Cpad includes die capacitance only. No package parasitics are included.

4 Package Mechanical Specifications and Pin Information

The Intel Pentium M processor is available in 478-pin, Micro-FCPGA and 479-ball, Micro-FCBGA packages. The Low Voltage and Ultra Low Voltage Intel Pentium M processors are available only in the Micro-FCBGA package. Different views of the Micro-FCPGA package are shown in Figure 4 through Figure 6. Package dimensions are shown in Table 18. Different views of the Micro-FCBGA package are shown in Figure 8 through Figure 10. Package dimensions are shown in Table 19. The Intel Pentium M Processor Die Offset is illustrated in Figure 7.

The Micro-FCBGA may have capacitors placed in the area surrounding the die. Because the dieside capacitors are electrically conductive, and only slightly shorter than the die height, care should be taken to avoid contacting the capacitors with electrically conductive materials. Doing so may short the capacitors, and possibly damage the device or render it inactive. The use of an insulating material between the capacitors and any thermal solution is recommended to prevent capacitor shorting.

DIE LABEL
TOP VIEW

PACKAGE KEEPOUT

CAPACITOR AREA

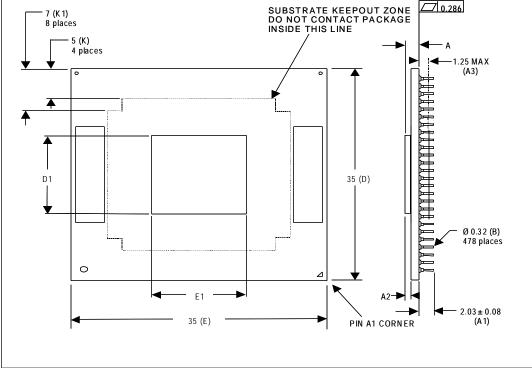

BOTTOM VIEW

Figure 4. Micro-FCPGA Package Top and Bottom Isometric Views

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 18 for details.

Figure 5. Micro-FCPGA Package - Top and Side Views

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 18 for details.

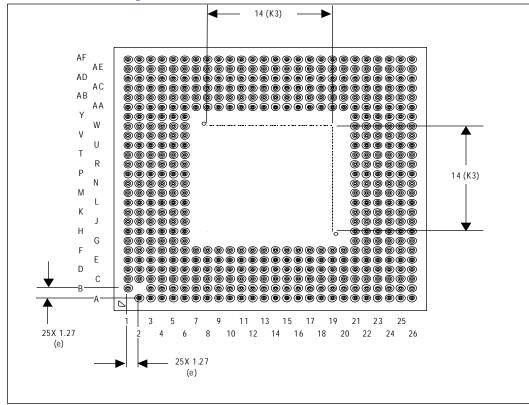


Figure 6. Micro-FCPGA Package - Bottom View

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 18 for details.

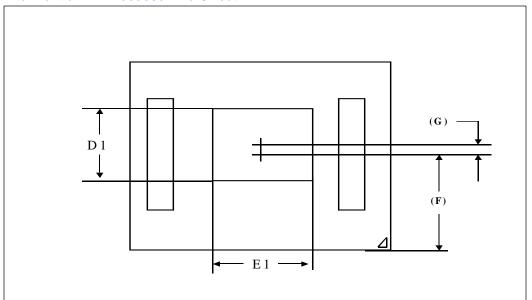


Figure 7. Intel Pentium M Processor Die Offset

Table 18. Micro-FCPGA Package Dimensions

Symbol	Parameter	Min	Max	Unit
A	Overall height, top of die to package seating plane	1.88	2.02	mm
-	Overall height, top of die to PCB surface, including socket (Refer to Note 1)	4.74	5.16	mm
A1	Pin length	1.95	2.11	mm
A2	Die height	0.	82	mm
А3	Pin-side capacitor height	-	1.25	mm
В	Pin diameter	0.28	0.36	mm
D	Package substrate length		35.1	mm
E	Package substrate width	34.9	35.1	mm
D1	Die length	10.56		mm
E1	Die width	7.84		mm
F	To Package Substrate Center	17.5		mm
G	Die Offset from Package Center	1.1	33	mm
е	Pin pitch	1.3	27	mm
K	Package edge keep-out	ţ	5	mm
K1	Package corner keep-out	-	7	mm
К3	Pin-side capacitor boundary	14		mm
-	Pin tip radial true position	<=0.254		mm
N	Pin count	478		each
Pdie	Allowable pressure on the die for thermal solution	- 689		kPa
W	Package weight	4.5		g
	Package Surface Flatness	0.2	286	mm

NOTE: Overall height with socket is based on design dimensions of the Micro-FCPGA package with no thermal solution attached. Values are based on design specifications and tolerances. This dimension is subject to change based on socket design, OEM motherboard design or OEM SMT process.

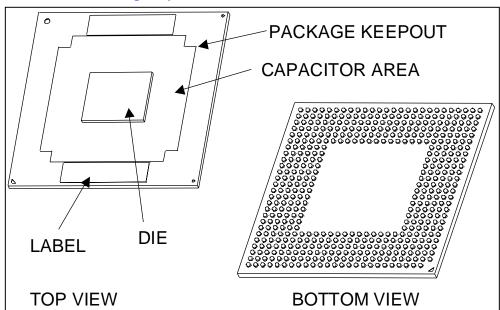
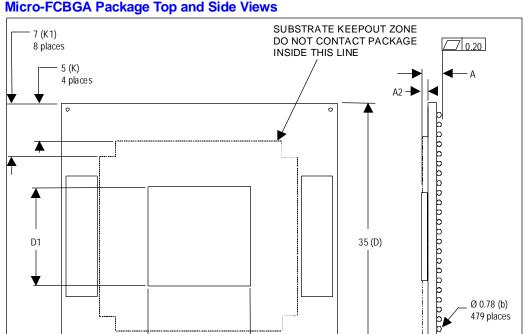



Figure 8. Micro-FCBGA Package Top and Bottom Isometric Views

0

Ø 0.78 (b) 479 places

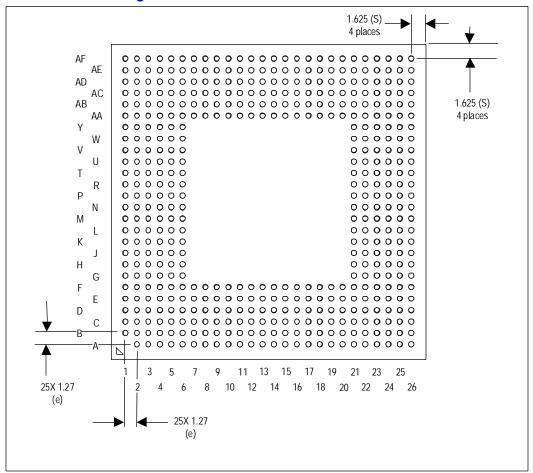
⊿

PIN A1 CORNER

Figure 9. Micro-FCBGA Package Top and Side Views

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 19 for details.

35 (E)


Table 19. Micro-FCBGA Package Dimensions

Symbol	Parameter	Min	Max	Unit
А	Overall height, as delivered (Refer to Note 1)	2.60	2.85	mm
A2	Die height	0.	82	mm
b	Ball diameter	0.	78	mm
D	Package substrate length	34.9	35.1	mm
E	Package substrate width	34.9	35.1	mm
D1	Die length	10	.56	mm
E1	Die width	7.84		mm
F	To Package Substrate Center	17.5		mm
G	Die Offset from Package Center	1.133		mm
е	Ball pitch	1.27		mm
K	Package edge keep-out	5		mm
K1	Package corner keep-out	-	7	mm
K2	Die-side capacitor height	-	0.7	mm
S	Package edge to first ball center	1.625		mm
N	Ball count	479		each
-	Solder ball coplanarity	0.2		mm
Pdie	Allowable pressure on the die for thermal solution	- 689		kPa
W	Package weight	4	4.5	

NOTE: Overall height as delivered. Values are based on design specifications and tolerances. This dimension is subject to change based on OEM motherboard design or OEM SMT process.

Figure 10. Micro-FCBGA Package Bottom View

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 19 for details.

4.1 Processor Pin-Out and Pin List

Figure 11 on the next page shows the top view pinout of the Intel Pentium M processor. The pin list arranged in two different formats is shown in Table 19 and Table 20.

Figure 11. The Coordinates of the Processor Pins as Viewed From the Top of the Package

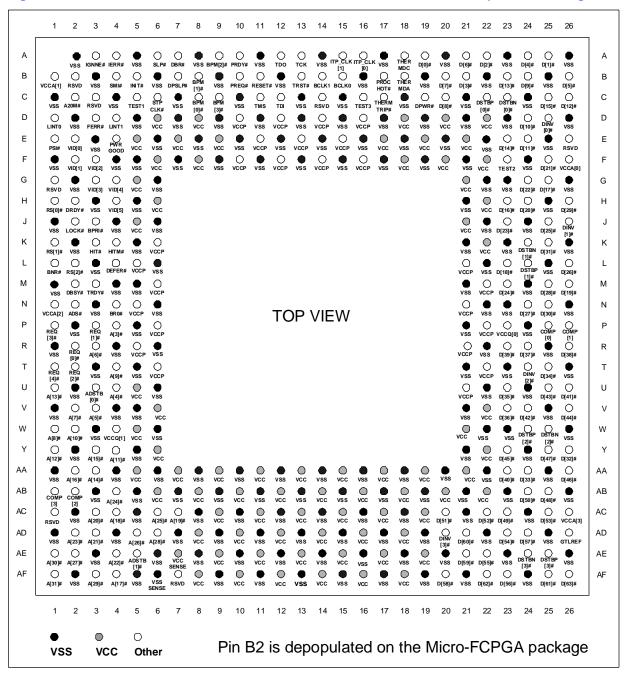


Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
A[3]#	P4	Source Synch	Input/Output
A[4]#	U4	Source Synch	Input/Output
A[5]#	V3	Source Synch	Input/Output
A[6]#	R3	Source Synch	Input/Output
A[7]#	V2	Source Synch	Input/Output
A[8]#	W1	Source Synch	Input/Output
A[9]#	T4	Source Synch	Input/Output
A[10]#	W2	Source Synch	Input/Output
A[11]#	Y4	Source Synch	Input/Output
A[12]#	Y1	Source Synch	Input/Output
A[13]#	U1	Source Synch	Input/Output
A[14]#	AA3	Source Synch	Input/Output
A[15]#	Y3	Source Synch	Input/Output
A[16]#	AA2	Source Synch	Input/Output
A[17]#	AF4	Source Synch	Input/Output
A[18]#	AC4	Source Synch	Input/Output
A[19]#	AC7	Source Synch	Input/Output
A[20]#	AC3	Source Synch	Input/Output
A[21]#	AD3	Source Synch	Input/Output
A[22]#	AE4	Source Synch	Input/Output
A[23]#	AD2	Source Synch	Input/Output
A[24]#	AB4	Source Synch	Input/Output
A[25]#	AC6	Source Synch	Input/Output
A[26]#	AD5	Source Synch	Input/Output
A[27]#	AE2	Source Synch	Input/Output
A[28]#	AD6	Source Synch	Input/Output
A[29]#	AF3	Source Synch	Input/Output
A[30]#	AE1	Source Synch	Input/Output
A[31]#	AF1	Source Synch	Input/Output
A20M#	C2	CMOS	Input
ADS#	N2	Common Clock	Input/Output
ADSTB[0]#	U3	Source Synch	Input/Output
ADSTB[1]#	AE5	Source Synch	Input/Output
BCLK[0]	B15	Bus Clock	Input
BCLK[1]	B14	Bus Clock	Input
BNR#	L1	Common Clock	Input/Output

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
BPM[0]#	C8	Common Clock	Output
BPM[1]#	B8	Common Clock	Output
BPM[2]#	A9	Common Clock	Output
BPM[3]#	C9	Common Clock	Input/Output
BPRI#	J3	Common Clock	Input
BR0#	N4	Common Clock	Input/Output
COMP[0]	P25	Power/Other	Input/Output
COMP[1]	P26	Power/Other	Input/Output
COMP[2]	AB2	Power/Other	Input/Output
COMP[3]	AB1	Power/Other	Input/Output
D[0]#	A19	Source Synch	Input/Output
D[1]#	A25	Source Synch	Input/Output
D[2]#	A22	Source Synch	Input/Output
D[3]#	B21	Source Synch	Input/Output
D[4]#	A24	Source Synch	Input/Output
D[5]#	B26	Source Synch	Input/Output
D[6]#	A21	Source Synch	Input/Output
D[7]#	B20	Source Synch	Input/Output
D[8]#	C20	Source Synch	Input/Output
D[9]#	B24	Source Synch	Input/Output
D[10]#	D24	Source Synch	Input/Output
D[11]#	E24	Source Synch	Input/Output
D[12]#	C26	Source Synch	Input/Output
D[13]#	B23	Source Synch	Input/Output
D[14]#	E23	Source Synch	Input/Output
D[15]#	C25	Source Synch	Input/Output
D[16]#	H23	Source Synch	Input/Output
D[17]#	G25	Source Synch	Input/Output
D[18]#	L23	Source Synch	Input/Output
D[19]#	M26	Source Synch	Input/Output
D[20]#	H24	Source Synch	Input/Output
D[21]#	F25	Source Synch	Input/Output
D[22]#	G24	Source Synch	Input/Output
D[23]#	J23	Source Synch	Input/Output
D[24]#	M23	Source Synch	Input/Output
D[25]#	J25	Source Synch	Input/Output
D[26]#	L26	Source Synch	Input/Output
D[27]#	N24	Source Synch	Input/Output
D[28]#	M25	Source Synch	Input/Output

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
D[29]#	H26	Source Synch	Input/Output
D[30]#	N25	Source Synch	Input/Output
D[31]#	K25	Source Synch	Input/Output
D[32]#	Y26	Source Synch	Input/Output
D[33]#	AA24	Source Synch	Input/Output
D[34]#	T25	Source Synch	Input/Output
D[35]#	U23	Source Synch	Input/Output
D[36]#	V23	Source Synch	Input/Output
D[37]#	R24	Source Synch	Input/Output
D[38]#	R26	Source Synch	Input/Output
D[39]#	R23	Source Synch	Input/Output
D[40]#	AA23	Source Synch	Input/Output
D[41]#	U26	Source Synch	Input/Output
D[42]#	V24	Source Synch	Input/Output
D[43]#	U25	Source Synch	Input/Output
D[44]#	V26	Source Synch	Input/Output
D[45]#	Y23	Source Synch	Input/Output
D[46]#	AA26	Source Synch	Input/Output
D[47]#	Y25	Source Synch	Input/Output
D[48]#	AB25	Source Synch	Input/Output
D[49]#	AC23	Source Synch	Input/Output
D[50]#	AB24	Source Synch	Input/Output
D[51]#	AC20	Source Synch	Input/Output
D[52]#	AC22	Source Synch	Input/Output
D[53]#	AC25	Source Synch	Input/Output
D[54]#	AD23	Source Synch	Input/Output
D[55]#	AE22	Source Synch	Input/Output
D[56]#	AF23	Source Synch	Input/Output
D[57]#	AD24	Source Synch	Input/Output
D[58]#	AF20	Source Synch	Input/Output
D[59]#	AE21	Source Synch	Input/Output
D[60]#	AD21	Source Synch	Input/Output
D[61]#	AF25	Source Synch	Input/Output
D[62]#	AF22	Source Synch	Input/Output
D[63]#	AF26	Source Synch	Input/Output
DBR#	A7	CMOS	Output
DBSY#	M2	Common Clock	Input/Output
DEFER#	L4	Common Clock	Input
DINV[0]#	D25	Source Synch	Input/Output

Table 20. Pin Listing by Pin Name

Din Signal Duffer					
Pin Name	Pin Number	Signal Buffer Type	Direction		
DINV[1]#	J26	Source Synch	Input/Output		
DINV[2]#	T24	Source Synch	Input/Output		
DINV[3]#	AD20	Source Synch	Input/Output		
DPSLP#	B7	CMOS	Input		
DPWR#	C19	Common Clock	Input		
DRDY#	H2	Common Clock	Input/Output		
DSTBN[0]#	C23	Source Synch	Input/Output		
DSTBN[1]#	K24	Source Synch	Input/Output		
DSTBN[2]#	W25	Source Synch	Input/Output		
DSTBN[3]#	AE24	Source Synch	Input/Output		
DSTBP[0]#	C22	Source Synch	Input/Output		
DSTBP[1]#	L24	Source Synch	Input/Output		
DSTBP[2]#	W24	Source Synch	Input/Output		
DSTBP[3]#	AE25	Source Synch	Input/Output		
FERR#	D3	Open Drain	Output		
GTLREF	AD26	Power/Other	Input		
HIT#	КЗ	Common Clock	Input/Output		
HITM#	K4	Common Clock	Input/Output		
IERR#	A4	Open Drain	Output		
IGNNE#	A3	CMOS	Input		
INIT#	B5	CMOS	Input		
ITP_CLK[0]	A16	CMOS	input		
ITP_CLK[1]	A15	CMOS	input		
LINT0	D1	CMOS	Input		
LINT1	D4	CMOS	Input		
LOCK#	J2	Common Clock	Input/Output		
PRDY#	A10	Common Clock	Output		
PREQ#	B10	Common Clock	Input		
PROCHOT#	B17	Open Drain	Output		
PSI#	E1	CMOS	Output		
PWRGOOD	E4	CMOS	Input		
REQ[0]#	R2	Source Synch	Input/Output		
REQ[1]#	P3	Source Synch	Input/Output		
REQ[2]#	T2	Source Synch	Input/Output		
REQ[3]#	P1	Source Synch	Input/Output		
REQ[4]#	T1	Source Synch	Input/Output		
RESET#	B11	Common Clock	Input		
RS[0]#	H1	Common Clock	Input		
RS[1]#	K1	Common Clock	Input		

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
RS[2]#	L2	Common Clock	Input
RSVD	AF7	Reserved	прис
RSVD	B2	Reserved	
RSVD	C14	Reserved	
RSVD	C14	Reserved	
RSVD	E26	Reserved	
RSVD	G1	Reserved	
RSVD	AC1	Reserved	
SLP#	AG1	CMOS	Innut
			Input
SMI#	B4	CMOS	Input
STPCLK#	C6	CMOS	Input
TCK	A13	CMOS	Input
TDI	C12	CMOS	Input
TDO	A12	Open Drain	Output
TEST1	C5	Test	
TEST2	F23	Test	
TEST3	C16	Test	
THERMDA	B18	Power/Other	
THERMDC	A18	Power/Other	
THERMTRIP#	C17	Open Drain	Output
TMS	C11	CMOS	Input
TRDY#	МЗ	Common Clock	Input
TRST#	B13	CMOS	Input
VCC	D6	Power/Other	
VCC	D8	Power/Other	
VCC	D18	Power/Other	
VCC	D20	Power/Other	
VCC	D22	Power/Other	
VCC	E5	Power/Other	
VCC	E7	Power/Other	
VCC	E9	Power/Other	
VCC	E17	Power/Other	
VCC	E19	Power/Other	
VCC	E21	Power/Other	
VCC	F6	Power/Other	
VCC	F8	Power/Other	
VCC	F18	Power/Other	
VCC	F20	Power/Other	
VCC	F22	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	G5	Power/Other	
VCC	G21	Power/Other	
VCC	H6	Power/Other	
VCC	H22	Power/Other	
VCC	J5	Power/Other	
VCC	J21	Power/Other	
VCC	K22	Power/Other	
VCC	U5	Power/Other	
VCC	V6	Power/Other	
VCC	V22	Power/Other	
VCC	W5	Power/Other	
VCC	W21	Power/Other	
VCC	Y6	Power/Other	
VCC	Y22	Power/Other	
VCC	AA5	Power/Other	
VCC	AA7	Power/Other	
VCC	AA9	Power/Other	
VCC	AA11	Power/Other	
VCC	AA13	Power/Other	
VCC	AA15	Power/Other	
VCC	AA17	Power/Other	
VCC	AA19	Power/Other	
VCC	AA21	Power/Other	
VCC	AB6	Power/Other	
VCC	AB8	Power/Other	
VCC	AB10	Power/Other	
VCC	AB12	Power/Other	
VCC	AB14	Power/Other	
VCC	AB16	Power/Other	
VCC	AB18	Power/Other	
VCC	AB20	Power/Other	
VCC	AB22	Power/Other	
VCC	AC9	Power/Other	
VCC	AC11	Power/Other	
VCC	AC13	Power/Other	
VCC	AC15	Power/Other	
VCC	AC17	Power/Other	
VCC	AC19	Power/Other	
VCC	AD8	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	AD10	Power/Other	
VCC	AD12	Power/Other	
VCC	AD14	Power/Other	
VCC	AD16	Power/Other	
VCC	AD18	Power/Other	
VCC	AE9	Power/Other	
VCC	AE11	Power/Other	
VCC	AE13	Power/Other	
VCC	AE15	Power/Other	
VCC	AE17	Power/Other	
VCC	AE19	Power/Other	
VCC	AF8	Power/Other	
VCC	AF10	Power/Other	
VCC	AF12	Power/Other	
VCC	AF14	Power/Other	
VCC	AF16	Power/Other	
VCC	AF18	Power/Other	
VCCA[0]	F26	Power/Other	
VCCA[1]	B1	Power/Other	
VCCA[2]	N1	Power/Other	
VCCA[3]	AC26	Power/Other	
VCCP	D10	Power/Other	
VCCP	D12	Power/Other	
VCCP	D14	Power/Other	
VCCP	D16	Power/Other	
VCCP	E11	Power/Other	
VCCP	E13	Power/Other	
VCCP	E15	Power/Other	
VCCP	F10	Power/Other	
VCCP	F12	Power/Other	
VCCP	F14	Power/Other	
VCCP	F16	Power/Other	
VCCP	K6	Power/Other	
VCCP	L5	Power/Other	
VCCP	L21	Power/Other	
VCCP	M6	Power/Other	
VCCP	M22	Power/Other	
VCCP	N5	Power/Other	
VCCP	N21	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VCCP	P6	Power/Other	
VCCP	P22	Power/Other	
VCCP	R5	Power/Other	
VCCP	R21	Power/Other	
VCCP	T6	Power/Other	
VCCP	T22	Power/Other	
VCCP	U21	Power/Other	
VCCQ[0]	P23	Power/Other	
VCCQ[1]	W4	Power/Other	
VCCSENSE	AE7	Power/Other	Output
VID[0]	E2	CMOS	Output
VID[1]	F2	CMOS	Output
VID[2]	F3	CMOS	Output
VID[3]	G3	CMOS	Output
VID[4]	G4	CMOS	Output
VID[5]	H4	CMOS	Output
VSS	A2	Power/Other	
VSS	A5	Power/Other	
VSS	A8	Power/Other	
VSS	A11	Power/Other	
VSS	A14	Power/Other	
VSS	A17	Power/Other	
VSS	A20	Power/Other	
VSS	A23	Power/Other	
VSS	A26	Power/Other	
VSS	В3	Power/Other	
VSS	B6	Power/Other	
VSS	B9	Power/Other	
VSS	B12	Power/Other	
VSS	B16	Power/Other	
VSS	B19	Power/Other	
VSS	B22	Power/Other	
VSS	B25	Power/Other	
VSS	C1	Power/Other	
VSS	C4	Power/Other	
VSS	C7	Power/Other	
VSS	C10	Power/Other	
VSS	C13	Power/Other	
VSS	C15	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	C18	Power/Other	
VSS	C21	Power/Other	
VSS	C24	Power/Other	
VSS	D2	Power/Other	
VSS	D5	Power/Other	
VSS	D7	Power/Other	
VSS	D9	Power/Other	
VSS	D11	Power/Other	
VSS	D13	Power/Other	
VSS	D15	Power/Other	
VSS	D17	Power/Other	
VSS	D19	Power/Other	
VSS	D21	Power/Other	
VSS	D23	Power/Other	
VSS	D26	Power/Other	
VSS	E3	Power/Other	
VSS	E6	Power/Other	
VSS	E8	Power/Other	
VSS	E10	Power/Other	
VSS	E12	Power/Other	
VSS	E14	Power/Other	
VSS	E16	Power/Other	
VSS	E18	Power/Other	
VSS	E20	Power/Other	
VSS	E22	Power/Other	
VSS	E25	Power/Other	
VSS	F1	Power/Other	
VSS	F4	Power/Other	
VSS	F5	Power/Other	
VSS	F7	Power/Other	
VSS	F9	Power/Other	
VSS	F11	Power/Other	
VSS	F13	Power/Other	
VSS	F15	Power/Other	
VSS	F17	Power/Other	
VSS	F19	Power/Other	
VSS	F21	Power/Other	
VSS	F24	Power/Other	
VSS	G2	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	G6	Power/Other	
VSS	G22	Power/Other	
VSS	G23	Power/Other	
VSS	G26	Power/Other	
VSS	H3	Power/Other	
VSS	H5	Power/Other	
VSS	H21	Power/Other	
VSS	H25	Power/Other	
VSS	J1	Power/Other	
VSS	J4	Power/Other	
VSS	J6	Power/Other	
VSS	J22	Power/Other	
VSS	J24	Power/Other	
VSS	K2	Power/Other	
VSS	K5	Power/Other	
VSS	K21	Power/Other	
VSS	K23	Power/Other	
VSS	K26	Power/Other	
VSS	L3	Power/Other	
VSS	L6	Power/Other	
VSS	L22	Power/Other	
VSS	L25	Power/Other	
VSS	M1	Power/Other	
VSS	M4	Power/Other	
VSS	M5	Power/Other	
VSS	M21	Power/Other	
VSS	M24	Power/Other	
VSS	N3	Power/Other	
VSS	N6	Power/Other	
VSS	N22	Power/Other	
VSS	N23	Power/Other	
VSS	N26	Power/Other	
VSS	P2	Power/Other	
VSS	P5	Power/Other	
VSS	P21	Power/Other	
VSS	P24	Power/Other	
VSS	R1	Power/Other	
VSS	R4	Power/Other	
VSS	R6	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	R22	Power/Other	
VSS	R25	Power/Other	
VSS	T3	Power/Other	
VSS	T5	Power/Other	
VSS	T21	Power/Other	
VSS	T23	Power/Other	
VSS	T26	Power/Other	
VSS	U2	Power/Other	
VSS	U6	Power/Other	
VSS	U22	Power/Other	
VSS	U24	Power/Other	
VSS	V1	Power/Other	
VSS	V4	Power/Other	
VSS	V5	Power/Other	
VSS	V21	Power/Other	
VSS	V25	Power/Other	
VSS	W3	Power/Other	
VSS	W6	Power/Other	
VSS	W22	Power/Other	
VSS	W23	Power/Other	
VSS	W26	Power/Other	
VSS	Y2	Power/Other	
VSS	Y5	Power/Other	
VSS	Y21	Power/Other	
VSS	Y24	Power/Other	
VSS	AA1	Power/Other	
VSS	AA4	Power/Other	
VSS	AA6	Power/Other	
VSS	AA8	Power/Other	
VSS	AA10	Power/Other	
VSS	AA12	Power/Other	
VSS	AA14	Power/Other	
VSS	AA16	Power/Other	
VSS	AA18	Power/Other	
VSS	AA20	Power/Other	
VSS	AA22	Power/Other	
VSS	AA25	Power/Other	
VSS	AB3	Power/Other	
VSS	AB5	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AB7	Power/Other	
VSS	AB9	Power/Other	
VSS	AB11	Power/Other	
VSS	AB13	Power/Other	
VSS	AB15	Power/Other	
VSS	AB17	Power/Other	
VSS	AB19	Power/Other	
VSS	AB21	Power/Other	
VSS	AB23	Power/Other	
VSS	AB26	Power/Other	
VSS	AC2	Power/Other	
VSS	AC5	Power/Other	
VSS	AC8	Power/Other	
VSS	AC10	Power/Other	
VSS	AC12	Power/Other	
VSS	AC14	Power/Other	
VSS	AC16	Power/Other	
VSS	AC18	Power/Other	
VSS	AC21	Power/Other	
VSS	AC24	Power/Other	
VSS	AD1	Power/Other	
VSS	AD4	Power/Other	
VSS	AD7	Power/Other	
VSS	AD9	Power/Other	
VSS	AD11	Power/Other	
VSS	AD13	Power/Other	
VSS	AD15	Power/Other	
VSS	AD17	Power/Other	
VSS	AD19	Power/Other	
VSS	AD22	Power/Other	
VSS	AD25	Power/Other	
VSS	AE3	Power/Other	
VSS	AE6	Power/Other	
VSS	AE8	Power/Other	
VSS	AE10	Power/Other	
VSS	AE12	Power/Other	
VSS	AE14	Power/Other	
VSS	AE16	Power/Other	
VSS	AE18	Power/Other	

Table 20. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AE20	Power/Other	
VSS	AE23	Power/Other	
VSS	AE26	Power/Other	
VSS	AF2	Power/Other	
VSS	AF5	Power/Other	
VSS	AF9	Power/Other	
VSS	AF11	Power/Other	
VSS	AF13	Power/Other	
VSS	AF15	Power/Other	
VSS	AF17	Power/Other	
VSS	AF19	Power/Other	
VSS	AF21	Power/Other	
VSS	AF24	Power/Other	
VSSSENSE	AF6	Power/Other	Output

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
A2	VSS	Power/Other	
A3	IGNNE#	CMOS	Input
A4	IERR#	Open Drain	Output
A5	VSS	Power/Other	
A6	SLP#	CMOS	Input
A7	DBR#	CMOS	Output
A8	VSS	Power/Other	
A9	BPM[2]#	Common Clock	Output
A10	PRDY#	Common Clock	Output
A11	VSS	Power/Other	
A12	TDO	Open Drain	Output
A13	TCK	CMOS	Input
A14	VSS	Power/Other	
A15	ITP_CLK[1]	CMOS	input
A16	ITP_CLK[0]	CMOS	input
A17	VSS	Power/Other	
A18	THERMDC	Power/Other	
A19	D[0]#	Source Synch	Input/Output
A20	VSS	Power/Other	
A21	D[6]#	Source Synch	Input/Output
A22	D[2]#	Source Synch	Input/Output

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
A23	VSS	Power/Other	
A24	D[4]#	Source Synch	Input/Output
A25	D[1]#	Source Synch	Input/Output
A26	VSS	Power/Other	
AA1	VSS	Power/Other	
AA2	A[16]#	Source Synch	Input/Output
AA3	A[14]#	Source Synch	Input/Output
AA4	VSS	Power/Other	
AA5	VCC	Power/Other	
AA6	VSS	Power/Other	
AA7	VCC	Power/Other	
AA8	VSS	Power/Other	
AA9	VCC	Power/Other	
AA10	VSS	Power/Other	
AA11	VCC	Power/Other	
AA12	VSS	Power/Other	
AA13	VCC	Power/Other	
AA14	VSS	Power/Other	
AA15	VCC	Power/Other	
AA16	VSS	Power/Other	
AA17	VCC	Power/Other	
AA18	VSS	Power/Other	
AA19	VCC	Power/Other	
AA20	VSS	Power/Other	
AA21	VCC	Power/Other	
AA22	VSS	Power/Other	
AA23	D[40]#	Source Synch	Input/Output
AA24	D[33]#	Source Synch	Input/Output
AA25	VSS	Power/Other	
AA26	D[46]#	Source Synch	Input/Output
AB1	COMP[3]	Power/Other	Input/Output
AB2	COMP[2]	Power/Other	Input/Output
AB3	VSS	Power/Other	
AB4	A[24]#	Source Synch	Input/Output
AB5	VSS	Power/Other	
AB6	VCC	Power/Other	
AB7	VSS	Power/Other	
AB8	VCC	Power/Other	
AB9	VSS	Power/Other	

Table 21. Pin Listing by Pin Number

Pin **Signal Buffer Pin Name Direction** Number **Type** VCC AB10 Power/Other AB11 **VSS** Power/Other VCC AB12 Power/Other VSS **AB13** Power/Other AB14 VCC Power/Other **AB15** VSS Power/Other AB16 VCC Power/Other **AB17 VSS** Power/Other AB18 VCC Power/Other AB19 VSS Power/Other AB20 VCC Power/Other VSS AB21 Power/Other VCC AB22 Power/Other AB23 VSS Power/Other AB24 D[50]# Source Synch Input/Output AB25 D[48]# Source Synch Input/Output AB26 VSS Power/Other AC1 **RSVD** Reserved AC2 VSS Power/Other AC3 A[20]# Source Synch Input/Output AC4 A[18]# Source Synch Input/Output AC5 VSS Power/Other AC6 A[25]# Source Synch Input/Output AC7 A[19]# Source Synch Input/Output AC8 VSS Power/Other AC9 VCC Power/Other AC10 **VSS** Power/Other AC11 VCC Power/Other AC12 VSS Power/Other AC13 VCC Power/Other AC14 VSS Power/Other AC15 VCC Power/Other AC16 VSS Power/Other AC17 VCC Power/Other AC18 VSS Power/Other AC19 VCC Power/Other AC20 D[51]# Source Synch Input/Output AC21 VSS Power/Other AC22 D[52]# Source Synch Input/Output

Table 21. Pin Listing by Pin Number

Table 21. The Listing by Tim Namber			
Pin Number	Pin Name	Signal Buffer Type	Direction
AC23	D[49]#	Source Synch	Input/Output
AC24	VSS	Power/Other	
AC25	D[53]#	Source Synch	Input/Output
AC26	VCCA[3]	Power/Other	
AD1	VSS	Power/Other	
AD2	A[23]#	Source Synch	Input/Output
AD3	A[21]#	Source Synch	Input/Output
AD4	VSS	Power/Other	
AD5	A[26]#	Source Synch	Input/Output
AD6	A[28]#	Source Synch	Input/Output
AD7	VSS	Power/Other	
AD8	VCC	Power/Other	
AD9	VSS	Power/Other	
AD10	VCC	Power/Other	
AD11	VSS	Power/Other	
AD12	VCC	Power/Other	
AD13	VSS	Power/Other	
AD14	VCC	Power/Other	
AD15	VSS	Power/Other	
AD16	VCC	Power/Other	
AD17	VSS	Power/Other	
AD18	VCC	Power/Other	
AD19	VSS	Power/Other	
AD20	DINV[3]#	Source Synch	Input/Output
AD21	D[60]#	Source Synch	Input/Output
AD22	VSS	Power/Other	
AD23	D[54]#	Source Synch	Input/Output
AD24	D[57]#	Source Synch	Input/Output
AD25	VSS	Power/Other	
AD26	GTLREF	Power/Other	
AE1	A[30]#	Source Synch	Input/Output
AE2	A[27]#	Source Synch	Input/Output
AE3	VSS	Power/Other	
AE4	A[22]#	Source Synch	Input/Output
AE5	ADSTB[1]#	Source Synch	Input/Output
AE6	VSS	Power/Other	
AE7	VCCSENSE	Power/Other	Output
AE8	VSS	Power/Other	
AE9	VCC	Power/Other	

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
AE10	VSS	Power/Other	
AE11	VCC	Power/Other	
AE12	VSS	Power/Other	
AE13	vcc	Power/Other	
AE14	VSS	Power/Other	
AE15	VCC	Power/Other	
AE16	VSS	Power/Other	
AE17	vcc	Power/Other	
AE18	VSS	Power/Other	
AE19	VCC	Power/Other	
AE20	VSS	Power/Other	
AE21	D[59]#	Source Synch	Input/Output
AE22	D[55]#	Source Synch	Input/Output
AE23	VSS	Power/Other	
AE24	DSTBN[3]#	Source Synch	Input/Output
AE25	DSTBP[3]#	Source Synch	Input/Output
AE26	VSS	Power/Other	
AF1	A[31]#	Source Synch	Input/Output
AF2	VSS	Power/Other	
AF3	A[29]#	Source Synch	Input/Output
AF4	A[17]#	Source Synch	Input/Output
AF5	VSS	Power/Other	
AF6	VSSSENSE	Power/Other	Output
AF7	RSVD	Reserved	
AF8	VCC	Power/Other	
AF9	VSS	Power/Other	
AF10	VCC	Power/Other	
AF11	VSS	Power/Other	
AF12	VCC	Power/Other	
AF13	VSS	Power/Other	
AF14	VCC	Power/Other	
AF15	VSS	Power/Other	
AF16	VCC	Power/Other	
AF17	VSS	Power/Other	
AF18	VCC	Power/Other	
AF19	VSS	Power/Other	
AF20	D[58]#	Source Synch	Input/Output
AF21	VSS	Power/Other	
AF22	D[62]#	Source Synch	Input/Output

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
AF23	D[56]#	Source Synch	Input/Output
AF24	VSS	Power/Other	
AF25	D[61]#	Source Synch	Input/Output
AF26	D[63]#	Source Synch	Input/Output
B1	VCCA[1]	Power/Other	
B2	RSVD	Reserved	
В3	VSS	Power/Other	
B4	SMI#	CMOS	Input
B5	INIT#	CMOS	Input
B6	VSS	Power/Other	
B7	DPSLP#	CMOS	Input
B8	BPM[1]#	Common Clock	Output
B9	VSS	Power/Other	
B10	PREQ#	Common Clock	Input
B11	RESET#	Common Clock	Input
B12	VSS	Power/Other	
B13	TRST#	CMOS	Input
B14	BCLK[1]	Bus Clock	Input
B15	BCLK[0]	Bus Clock	Input
B16	VSS	Power/Other	
B17	PROCHOT#	Open Drain	Output
B18	THERMDA	Power/Other	
B19	VSS	Power/Other	
B20	D[7]#	Source Synch	Input/Output
B21	D[3]#	Source Synch	Input/Output
B22	VSS	Power/Other	
B23	D[13]#	Source Synch	Input/Output
B24	D[9]#	Source Synch	Input/Output
B25	VSS	Power/Other	
B26	D[5]#	Source Synch	Input/Output
C1	VSS	Power/Other	
C2	A20M#	CMOS	Input
C3	RSVD	Reserved	
C4	VSS	Power/Other	
C5	TEST1	Test	
C6	STPCLK#	CMOS	Input
C7	VSS	Power/Other	
C8	BPM[0]#	Common Clock	Output
C9	BPM[3]#	Common Clock	Input/Output

Table 21. Pin Listing by Pin Number

Pin **Signal Buffer Pin Name Direction** Number **Type** C10 VSS Power/Other C11 **TMS CMOS** Input C12 TDI **CMOS** Input VSS C13 Power/Other C14 **RSVD** Reserved C15 VSS Power/Other C16 TEST3 Test C17 THERMTRIP# Open Drain Output C18 **VSS** Power/Other C19 DPWR# Common Clock Input C20 D[8]# Source Synch Input/Output C21 VSS Power/Other C22 DSTBP[0]# Source Synch Input/Output C23 DSTBN[0]# Input/Output Source Synch C24 VSS Power/Other C25 Input/Output D[15]# Source Synch C26 D[12]# Input/Output Source Synch D1 LINT0 **CMOS** Input D2 VSS Power/Other D3 FERR# Open Drain Output D4 LINT1 **CMOS** Input D5 VSS Power/Other VCC D6 Power/Other VSS D7 Power/Other D8 VCC Power/Other VSS D9 Power/Other D10 VCCP Power/Other VSS D11 Power/Other D12 VCCP Power/Other D13 **VSS** Power/Other D14 VCCP Power/Other D15 VSS Power/Other D16 VCCP Power/Other VSS D17 Power/Other D18 VCC Power/Other D19 VSS Power/Other D20 VCC Power/Other VSS D21 Power/Other D22 VCC Power/Other

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
D23	VSS	Power/Other	
D24	D[10]#	Source Synch	Input/Output
D25	DINV[0]#	Source Synch	Input/Output
D26	VSS	Power/Other	
E1	PSI#	CMOS	Output
E2	VID[0]	CMOS	Output
E3	VSS	Power/Other	
E4	PWRGOOD	CMOS	Input
E5	VCC	Power/Other	
E6	VSS	Power/Other	
E7	VCC	Power/Other	
E8	VSS	Power/Other	
E9	VCC	Power/Other	
E10	VSS	Power/Other	
E11	VCCP	Power/Other	
E12	VSS	Power/Other	
E13	VCCP	Power/Other	
E14	VSS	Power/Other	
E15	VCCP	Power/Other	
E16	VSS	Power/Other	
E17	VCC	Power/Other	
E18	VSS	Power/Other	
E19	VCC	Power/Other	
E20	VSS	Power/Other	
E21	VCC	Power/Other	
E22	VSS	Power/Other	
E23	D[14]#	Source Synch	Input/Output
E24	D[11]#	Source Synch	Input/Output
E25	VSS	Power/Other	
E26	RSVD	Reserved	
F1	VSS	Power/Other	
F2	VID[1]	CMOS	Output
F3	VID[2]	CMOS	Output
F4	VSS	Power/Other	
F5	VSS	Power/Other	
F6	VCC	Power/Other	
F7	VSS	Power/Other	
F8	VCC	Power/Other	
F9	VSS	Power/Other	

Table 21. Pin Listing by Pin Number

Din Signal Buffer				
Pin Number	Pin Name	Signal Buffer Type	Direction	
F10	VCCP	Power/Other		
F11	VSS	Power/Other		
F12	VCCP	Power/Other		
F13	VSS	Power/Other		
F14	VCCP	Power/Other		
F15	VSS	Power/Other		
F16	VCCP	Power/Other		
F17	VSS	Power/Other		
F18	VCC	Power/Other		
F19	VSS	Power/Other		
F20	VCC	Power/Other		
F21	VSS	Power/Other		
F22	VCC	Power/Other		
F23	TEST2	Test		
F24	VSS	Power/Other		
F25	D[21]#	Source Synch	Input/Output	
F26	VCCA[0]	Power/Other		
G1	RSVD	Reserved		
G2	VSS	Power/Other		
G3	VID[3]	CMOS	Output	
G4	VID[4]	CMOS	Output	
G5	VCC	Power/Other		
G6	VSS	Power/Other		
G21	VCC	Power/Other		
G22	VSS	Power/Other		
G23	VSS	Power/Other		
G24	D[22]#	Source Synch	Input/Output	
G25	D[17]#	Source Synch	Input/Output	
G26	VSS	Power/Other		
H1	RS[0]#	Common Clock	Input	
H2	DRDY#	Common Clock	Input/Output	
НЗ	VSS	Power/Other		
H4	VID[5]	CMOS	Output	
H5	VSS	Power/Other		
H6	VCC	Power/Other		
H21	VSS	Power/Other		
H22	vcc	Power/Other		
H23	D[16]#	Source Synch	Input/Output	
H24	D[20]#	Source Synch	Input/Output	

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
H25	VSS	Power/Other	
H26	D[29]#	Source Synch	Input/Output
J1	VSS Power/Other		
J2	LOCK#	Common Clock	Input/Output
J3	BPRI#	Common Clock	Input
J4	VSS	Power/Other	
J5	VCC	Power/Other	
J6	VSS	Power/Other	
J21	VCC	Power/Other	
J22	VSS	Power/Other	
J23	D[23]#	Source Synch	Input/Output
J24	VSS	Power/Other	
J25	D[25]#	Source Synch	Input/Output
J26	DINV[1]#	Source Synch	Input/Output
K1	RS[1]#	Common Clock	Input
K2	VSS	Power/Other	
K3	HIT#	Common Clock	Input/Output
K4	HITM#	Common Clock	Input/Output
K5	VSS	Power/Other	
K6	VCCP	Power/Other	
K21	VSS	Power/Other	
K22	VCC	Power/Other	
K23	VSS	Power/Other	
K24	DSTBN[1]#	Source Synch	Input/Output
K25	D[31]#	Source Synch	Input/Output
K26	VSS	Power/Other	
L1	BNR#	Common Clock	Input/Output
L2	RS[2]#	Common Clock	Input
L3	VSS	Power/Other	
L4	DEFER#	Common Clock	Input
L5	VCCP	Power/Other	
L6	VSS	Power/Other	
L21	VCCP	Power/Other	
L22	VSS	Power/Other	
L23	D[18]#	Source Synch	Input/Output
L24	DSTBP[1]#	Source Synch	Input/Output
L25	VSS	Power/Other	
L26	D[26]#	Source Synch	Input/Output
M1	VSS	Power/Other	

Table 21. Pin Listing by Pin Number

lable 21. Pin Listing by Pin Number			
Pin Number	Pin Name	Pin Name Signal Buffer Type	
M2	DBSY#	Common Clock	Input/Output
M3	TRDY#	Common Clock	Input
M4	VSS	Power/Other	
M5	VSS	Power/Other	
M6	VCCP	Power/Other	
M21	VSS	Power/Other	
M22	VCCP	Power/Other	
M23	D[24]#	Source Synch	Input/Output
M24	VSS	Power/Other	
M25	D[28]#	Source Synch	Input/Output
M26	D[19]#	Source Synch	Input/Output
N1	VCCA[2]	Power/Other	
N2	ADS#	Common Clock	Input/Output
N3	VSS	Power/Other	
N4	BR0#	Common Clock	Input/Output
N5	VCCP	Power/Other	
N6	VSS	Power/Other	
N21	VCCP	Power/Other	
N22	VSS	Power/Other	
N23	VSS	Power/Other	
N24	D[27]#	Source Synch	Input/Output
N25	D[30]#	Source Synch	Input/Output
N26	VSS	Power/Other	
P1	REQ[3]#	Source Synch	Input/Output
P2	VSS	Power/Other	
P3	REQ[1]#	Source Synch	Input/Output
P4	A[3]#	Source Synch	Input/Output
P5	VSS	Power/Other	
P6	VCCP	Power/Other	
P21	VSS	Power/Other	
P22	VCCP	Power/Other	
P23	VCCQ[0]	Power/Other	
P24	VSS	Power/Other	
P25	COMP[0]	Power/Other	Input/Output
P26	COMP[1]	Power/Other	Input/Output
R1	VSS	Power/Other	
R2	REQ[0]#	Source Synch	Input/Output
R3	A[6]#	Source Synch	Input/Output
R4	VSS	Power/Other	

Table 21. Pin Listing by Pin Number

Pin	Disc No.	Signal Buffer	Discotion
Number	Pin Name	Туре	Direction
R5	VCCP	Power/Other	
R6	VSS	Power/Other	
R21	VCCP	Power/Other	
R22	VSS	Power/Other	
R23	D[39]#	Source Synch	Input/Output
R24	D[37]#	Source Synch	Input/Output
R25	VSS	Power/Other	
R26	D[38]#	Source Synch	Input/Output
T1	REQ[4]#	Source Synch	Input/Output
T2	REQ[2]#	Source Synch	Input/Output
Т3	VSS	Power/Other	
T4	A[9]#	Source Synch	Input/Output
T5	VSS	Power/Other	
T6	VCCP	Power/Other	
T21	VSS	Power/Other	
T22	VCCP	Power/Other	
T23	VSS	Power/Other	
T24	DINV[2]#	CMOS	Input/Output
T25	D[34]#	Source Synch	Input/Output
T26	VSS	Power/Other	
U1	A[13]#	Source Synch	Input/Output
U2	VSS	Power/Other	
U3	ADSTB[0]#	Source Synch	Input/Output
U4	A[4]#	Source Synch	Input/Output
U5	VCC	Power/Other	
U6	VSS	Power/Other	
U21	VCCP	Power/Other	
U22	VSS	Power/Other	
U23	D[35]#	Source Synch	Input/Output
U24	VSS	Power/Other	
U25	D[43]#	Source Synch	Input/Output
U26	D[41]#	Source Synch	Input/Output
V1	VSS	Power/Other	
V2	A[7]#	Source Synch	Input/Output
V3	A[5]#	Source Synch	Input/Output
V4	VSS	Power/Other	
V5	VSS	Power/Other	
V6	VCC	Power/Other	
V21	VSS	Power/Other	

Table 21. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
V22	VCC	Power/Other	
V23	D[36]#	Source Synch	Input/Output
V24	D[42]#	Source Synch	Input/Output
V25	VSS	Power/Other	
V26	D[44]#	Source Synch	Input/Output
W1	A[8]#	Source Synch	Input/Output
W2	A[10]#	Source Synch	Input/Output
W3	VSS	Power/Other	
W4	VCCQ[1]	Power/Other	
W5	VCC	Power/Other	
W6	VSS	Power/Other	
W21	VCC	Power/Other	
W22	VSS	Power/Other	
W23	VSS	Power/Other	
W24	DSTBP[2]#	Source Synch	Input/Output
W25	DSTBN[2]#	Source Synch	Input/Output
W26	VSS	Power/Other	
Y1	A[12]#	Source Synch	Input/Output
Y2	VSS	Power/Other	
Y3	A[15]#	Source Synch	Input/Output
Y4	A[11]#	Source Synch	Input/Output
Y5	VSS	Power/Other	
Y6	VCC	Power/Other	
Y21	VSS	Power/Other	
Y22	VCC	Power/Other	
Y23	D[45]#	Source Synch	Input/Output
Y24	VSS	Power/Other	
Y25	D[47]#	Source Synch	Input/Output
Y26	D[32]#	Source Synch	Input/Output

4.2 Alphabetical Signals Reference

Table 22. Signal Description (Sheet 1 of 7)

Name	Туре		Description	
A[31:3]#	Input/ Output	A[31:3]# (Address) define a 2 ³² -byte physical memory address space. In subphase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the Intel Pentium M processor system bus. A[31:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted.		
A20M# Input		If A20M# (Address-20 Mask bit 20 (A20#) before looking read/write transaction on the processor's address wrap-al is only supported in real mod	up a line in any internal be bus. Asserting A20M# round at the 1-Mbyte bo de.	cache and before driving a emulates the 8086 undary. Assertion of A20M#
		A20M# is an asynchronous following an Input/Output wri assertion of the correspondi	ite instruction, it must be	valid along with the TRDY#
ADS#	Input/ Output	ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.		
		Address strobes are used to falling edges. Strobes are as		
ADSTB[1:0]#	Input/ Output	Signals	Associated Strobe	
	- Carpar	REQ[4:0]#, A[16:3]#	ADSTB[0]#	
		A[31:17]#	ADSTB[1]#	
BCLK[1:0]	Input	The differential pair BCLK (Bus Clock) determines the system bus frequency. All processor system bus agents must receive these signals to drive their outputs and latch their inputs.		
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent that is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.		
BPM[2:0]# BPM[3]	Output Input/ Output	BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[3:0]# should connect the appropriate pins of all Intel Pentium M processor system bus agents. This includes debug or performance monitoring tools. Please refer to the platform design guides and ITP700 Debug Port Design Guide for more detailed information.		
BPRI#	Input	BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor system bus. It must connect the appropriate pins of both processor system bus agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.		
BR0#	Input/ Output	BR0# is used by the process between the Intel Pentium M (High Priority Agent) of the I	A processor (Symmetric	Agent) and the MCH-M

Table 22. Signal Description (Sheet 2 of 7)

Name	Туре			Description	
COMP[3:0]	Analog	COMP[3:0] must be terminated on the system board using precision (1% tolerance) resistors. Refer to the platform design guides for more implementation details.			
		between the proc pins on both age transfer. D[63:0]# are qua common clock pe DSTBP[3:0]# and pair of one DSTE of data signals to	essor system bus nts. The data drive d-pumped signals eriod. D[63:0]# are d DSTBN[3:0]#. Ea BP# and one DSTE data strobes and	agents, and rer asserts DRI and will thus le latched off the ach group of 1 BN#. The follow	als provide a 64-bit data path must connect the appropriate DY# to indicate a valid data be driven four times in a le falling edge of both 6 data signals correspond to a wing table shows the grouping
		Quad-Pumped S	-		
D[63:0]#	Input/ Output	Data Group	DSTBN#/ DSTBP#	DINV#	
		D[15:0]#	0	0	
		D[31:16]#	1	1	
		D[47:32]#	2	2	
		D[63:48]#	3	3	
		Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high. DBR# (Data Bus Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect. DBR# is not a processor signal.			
DBR#	Output	signal is active, the active high. DBR# (Data Bus is implemented of so that an in-target)	signals corresponding Reset) is used on the system boaret probe can drive	ds to one DIN data group is i ly in processo rd. DBR# is us system reset.	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented
DBR#	Output Input/ Output	signal is active, the active high. DBR# (Data Bus is implemented of so that an in-targ in the system, DBSY# (Data Buthe processor system) released after DBSY# (Data Buthe processor system).	signals corresponding Reset) is used on the system boaret probe can drive BR# is a no conne s Busy) is asserte stem bus to indica	ds to one DIN data group is in processord. DBR# is us system reset. ct. DBR# is not d by the agent te that the dat d. This signal	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented
	Input/	signal is active, the active high. DBR# (Data Bus is implemented of so that an in-targ in the system, DEDSY# (Data But the processor system as a date of the processor system as a date of the processor of the processor of the processor of the processor system as a date of the processor of the p	Reset) is used on the system boaret probe can drive BR# is a no conness Busy) is asserted by an agent to der completion. As the addressed mere	ds to one DIN data group is in processord. DBR# is us system reset. ct. DBR# is not depend to that the data d. This signal is agents.	V# signal. When the DINV# inverted and therefore sampled or systems where no debug portized by a debug port interposer. If a debug port is implemented of a processor signal.
DBSY#	Input/ Output	signal is active, the active high. DBR# (Data Bus is implemented of so that an in-targ in the system, DE DBSY# (Data Busthe processor system as a system of the processor sys	signals corresponding Reset) is used on the system boaret probe can drive BR# is a no conners. Busy) is asserted the stem bus to indicate a system bused and agent to the completion. As the addressed meropriate pins of both Bus Inversion) are 53:0]# signals. The bus is inverted. The	ds to one DIN data group is in processord. DBR# is us system reset. ct. DBR# is not depend to that the data d. This signal is agents. Dindicate that secretion of DE mory or Input/6th processors in e source synce a DINV[3:0]# see bus agent with the data and the secretion of DE mory or Input/6th processors in the secretion of DE mory or Input/6th processor in the secretion of DE mo	V# signal. When the DINV# inverted and therefore sampled or systems where no debug portized by a debug port interposer. If a debug port is implemented at a processor signal. It responsible for driving data on a bus is in use. The data bus is must connect the appropriate a transaction cannot be FER# is normally the Output agent. This signal must
DBSY#	Input/ Output	signal is active, the active high. DBR# (Data Busis implemented of so that an in-targin the system, DEDSY# (Data Buthe processor systeleased after DEpins on both processor in the system of the appropriate of the appropriate of the appropriate of the data on the data more than half the cycle.	signals corresponding Reset) is used on the system boaret probe can drive BR# is a no conners. Busy) is asserted the stem bus to indicate a system bused and agent to the completion. As the addressed meropriate pins of both Bus Inversion) are 53:0]# signals. The bus is inverted. The	ds to one DIN data group is in ly in processord. DBR# is us system reset. ct. DBR# is not d by the agent te that the data d. This signal agents. co indicate that sesertion of DE mory or Input/th processor signal to be source synce polivological processor signal agent wovered group,	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented at a processor signal. It responsible for driving data on a bus is in use. The data bus is must connect the appropriate a transaction cannot be FER# is normally the Output agent. This signal must system bus agents.
DBSY#	Input/ Output	signal is active, the active high. DBR# (Data Busis implemented of so that an in-targin the system, DEDSY# (Data Buthe processor systeleased after DEpins on both processor in the system of the appropriate of the appropriate of the appropriate of the data on the data more than half the cycle.	Reset) is used on the system boaret probe can drive 3R# is a no conne s Busy) is asserted the stem bus to indicate system bus itself by an agent to der completion. As the addressed meropriate pins of both Bus Inversion) are 33:0]# signals. The bus is inverted. The bits, within the component To Data	ds to one DIN data group is in ly in processord. DBR# is us system reset. ct. DBR# is not d by the agent te that the data d. This signal agents. co indicate that sesertion of DE mory or Input/th processor signal to be source synce polivological processor signal agent wovered group,	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented at a processor signal. It responsible for driving data on a bus is in use. The data bus is must connect the appropriate a transaction cannot be FER# is normally the Output agent. This signal must system bus agents.
DBSY#	Input/ Output Input	signal is active, the active high. DBR# (Data Busis implemented of so that an in-targin the system, DE DBSY# (Data Buthe processor system) and the processor system of the processor of the proc	signals corresponding Reset) is used on the system boaret probe can drive BR# is a no conne set Busy) is asserted the busto indicated by an agent to der completion. As the addressed meropriate pins of both Bus Inversion) are 33:0]# signals. The bus is inverted. The bits, within the completion and the busto indicated by an agent to der completion. As the addressed meropriate pins of both Bus Inversion) are 33:0]# signals. The bus is inverted. The bits, within the completion and the busto inverted and the busto inverted. The busto is inverted and the busto inverted and the busto inverted and the busto inverted and the busto inverted. The busto inverted and the	ds to one DIN data group is in processord. DBR# is us system reset. ct. DBR# is not d by the agent te that the data d. This signal is agents. The processor is the section of DE mory or Input/6th processor is the source synce DINV[3:0]# is no bus agent wovered group, Bus	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented at a processor signal. It responsible for driving data on a bus is in use. The data bus is must connect the appropriate a transaction cannot be FER# is normally the Output agent. This signal must system bus agents.
DBSY#	Input/ Output Input	signal is active, the active high. DBR# (Data Bus is implemented of so that an in-targin the system, DE DBSY# (Data Busthe processor system assed after DE pins on both processor system and the pr	signals corresponding Reset) is used on the system board probe can drive and the sessor system bused to probe the sessor system bused the sessor system bused the sessor system bused by an agent the der completion. As the addressed metopriate pins of both as Inversion) are as inverted. The bus is inverted. The bits, within the completion of the system of the syste	ds to one DIN data group is in ly in processord. DBR# is us system reset. ct. DBR# is not dependent to that the data d. This signal agents. It is agents. It is agent of DE mory or Input/6th processor size source synce a DINV[3:0]# size bus agent wovered group, Bus s Signals	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented at a processor signal. It responsible for driving data on a bus is in use. The data bus is must connect the appropriate a transaction cannot be FER# is normally the Output agent. This signal must system bus agents.
DBSY#	Input/ Output Input	signal is active, the active high. DBR# (Data Busis implemented of so that an in-targin the system, DEDSY# (Data Buthe processor systeleased after DED pins on both processor systems of the appropriate pins of the pin	signals corresponding Reset) is used on the system boaret probe can drive BR# is a no conne set between bus to indicate as SY# is deasserted by an agent to der completion. As the addressed meropriate pins of both Bus Inversion) are as 33:0]# signals. The bus is inverted. The bits, within the completion of the bits, within the completion of the bus is inverted. The bits is inverted in bits is inverted. The bits is inverted in bits is inverted. The bits is inv	ds to one DIN data group is in processord. DBR# is us system reset. ct. DBR# is not d by the agent te that the data d. This signal is agents. In the data discrete that the data discrete that secretion of DE mory or Input/oth processor size source synce a DINV[3:0]# size bus agent wovered group, Bus s Signals :48]#	V# signal. When the DINV# inverted and therefore sampled or systems where no debug port sed by a debug port interposer. If a debug port is implemented at a processor signal. It responsible for driving data on a bus is in use. The data bus is must connect the appropriate a transaction cannot be FER# is normally the Output agent. This signal must system bus agents.

Table 22. Signal Description (Sheet 3 of 7)

Name	Туре		Description	
DPSLP#	Input	DPSLP# when asserted on the platform causes the processor to transition from the Sleep state to the Deep Sleep state. In order to return to the Sleep state, DPSLP# must be deasserted. DPSLP# is driven by the ICH4-M component and also connects to the MCH-M component of the Intel 855PM or Intel 855GM chipset.		
DPWR#	Input	DPWR# is a control signal from the Intel 855PM and Intel 855GM chipsets used to reduce power on the Intel Pentium M data bus input buffers.		
DRDY#	Input/ Output	DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of both processor system bus agents.		
		Data strobe used to latch	in D[63:0]#.	
		Signals	Associated Strobe	
DSTBN[3:0]#	Input/	D[15:0]#, DINV[0]#	DSTBN[0]#	
DO I BIN[0.0]II	Output	D[31:16]#, DINV[1]#	DSTBN[1]#	
		D[47:32]#, DINV[2]#	DSTBN[2]#	
		D[63:48]#, DINV[3]#	DSTBN[3]#	
		Data strobe used to latch	in D[63:0]#.	
		Signals	Associated Strobe	
DSTBP[3:0]#	Input/	D[15:0]#, DINV[0]#	DSTBP[0]#	
D3 1 D1 [3.0]#	Output	D[31:16]#, DINV[1]#	DSTBP[1]#	
		D[47:32]#, DINV[2]#	DSTBP[2]#	
		D[63:48]#, DINV[3]#	DSTBP[3]#	
FERR#/PBE#	Output	FERR# (Floating-point Error)/PBE#(Pending Break Event) is a multiplexed signal and its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating point when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 80387 coprocessor, and is included for compatibility with systems using MS-DOS* type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it will remain asserted until STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active will also cause an FERR# break event. For additional information on the pending break event functionality, including identification of support for the feature and enable/disable information, refer to Volume 3 of the Intel ** Architecture Software Developer's Manual* and the Intel ** Processor Identification and CPUID Instruction application note. For termination requirements please refer to the platform design guides.		
GTLREF	Input	GTLREF determines the s should be set at 2/3 V _{CCP} .	signal reference level for A GTLREF is used by the A0 ogical 1. Please refer to th	GTL+ input pins. GTLREF GTL+ receivers to determine e platform design guides for

Table 22. Signal Description (Sheet 4 of 7)

Name	Туре	Description
HIT#	Input/ Output	HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either system bus agent may assert both HIT# and HITM# together to
HITM#	Input/ Output	indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the processor system bus. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#, BINIT#, or INIT#.
		For termination requirements please refer to the platform design guides.
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
		IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power on Reset vector configured during power on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both processor system bus action.
		If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST)
		For termination requirements please refer to the platform design guides.
ITP_CLK[1:0]	Input	ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where no debug port is implemented on the system board. ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port implemented on an interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are no connects. These are not processor signals.
LINT[1:0]	Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous.
		Both of these signals must be software configured using BIOS programming of the APIC register space and used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration.
LOCK#	Input/	LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both processor system bus agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction.
LOCK#	Output	When the priority agent asserts BPRI# to arbitrate for ownership of the processor system bus, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the processor system bus throughout the bus locked operation and ensure the atomicity of lock.

Table 22. Signal Description (Sheet 5 of 7)

Name	Туре	Description	
PRDY#	Output	Probe Ready signal used by debug tools to determine processor debug readiness. Please refer to the <i>ITP700 Debug Port Design Guide</i> and the platform design guides for more implementation details.	
PREQ#	Input	Probe Request signal used by debug tools to request debug operation of the processor. Please refer to the ITP700 Debug Port Design Guide and the platform design guides for more implementation details.	
PROCHOT#	Output	PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit has been activated, if enabled. See Chapter 5 for more details.	
	·	For termination requirements please refer to the platform design guides. This signal may require voltage translation on the motherboard. Please refer to the platform design guides for more details.	
PSI#	Output	Processor Power Status Indicator signal. This signal is asserted when the processor is in a lower state (Deep Sleep and Deeper Sleep). See Section 2.1.3 for more details.	
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal as a clean indication that the clocks and power supplies are stable and within their specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD.	
		The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout the boundary scan operation.	
		For termination requirements please refer to the platform design guides.	
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins of both processor system bus agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#.	
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after Vcc and BCLK have reached their proper specifications. On observing active RESET#, both system bus agents will deassert their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted.	
		Please refer to the <i>ITP700 Debug Port Design Guide</i> and the platform design guides for termination requirements and implementation details. There is a 55 ohm (nominal) on die pullup resistor on this signal.	
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both processor system bus agents.	
RSVD	Reserved/ No Connect	These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use. Please refer to the platform design guides for more details.	

Table 22. Signal Description (Sheet 6 of 7)

Name	Type	Description
SLP#	Input	SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler.
		If SMI# is asserted during the deassertion of RESET# the processor will tristate its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the system bus and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
TCK	CK Input	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).
	•	Please refer to the <i>ITP700 Debug Port Design Guide</i> and the platform design guides for termination requirements and implementation details.
TDI	Input	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. Please refer to the ITP700 Debug Port Design Guide and the platform design
		guides for termination requirements and implementation details.
TDO	Output	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. Please refer to the <i>ITP700 Debug Port Design Guide</i> and the platform design guides for termination requirements and implementation details.
TEST1, TEST2, TEST3	Input	TEST1, TEST2, and TEST3 must be left unconnected but should have a stuffing option connection to V _{SS} separately using 1-k, pull-down resistors. Please refer to the platform design guides for more details.
THERMDA	Other	Thermal Diode Anode.
THERMDC	Other	Thermal Diode Cathode.
THERMTRIP#	Output	The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 125°C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin.
		For termination requirements please refer to the platform design guides.
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.
5	•	Please refer to the <i>ITP700 Debug Port Design Guide</i> and the platform design guides for termination requirements and implementation details.

Table 22. Signal Description (Sheet 7 of 7)

Name	Туре	Description		
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both system bus agents.		
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. Please refer to the <i>ITP700 Debug Port Design Guide</i> and the platform design guides for termination requirements an implementation details.		
V _{cc}	Input	Processor core power supply.		
V _{CCA} [3:0]	Input	V_{CCA} provides isolated power for the internal processor core PLL's. Refer to the platform design guides for complete implementation details.		
V _{CCP}	Input	Processor I/O Power Supply.		
V _{ccQ} [1:0]	Input	Quiet power supply for on die COMP circuitry. These pins should be connected to V_{CCP} on the motherboard. However, these connections should enable addition of decoupling on the V_{CCQ} lines if necessary.		
V _{CCSENSE}	Output	V_{CCSENSE} is an isolated low impedance connection to processor core power (V_{CC}). It can be used to sense or measure power near the silicon with little noise. Please refer to the platform design guides for termination recommendations and more details.		
VID[5:0]	Output	VID[5:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (Vcc). Unlike some previous generations of processors, these are CMOS signals that are driven by the Intel Pentium M processor. The voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 3 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself.		
V _{SSSENSE}	Output	V_{SSSENSE} is an isolated low impedance connection to processor core V_{SS} . It can be used to sense or measure ground near the silicon with little noise. Please refer to the platform design guides for termination recommendations and more details.		

The Intel Pentium M processor requires a thermal solution to maintain temperatures within operating limits. A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions include active or passive heatsinks or heat exchangers attached to the processor exposed die. The solution should make firm contact with the die while maintaining processor mechanical specifications such as pressure. A typical system level thermal solution may consist of a processor fan ducted to a heat exchanger that is thermally coupled to the processor using a heat pipe or direct die attachment. A secondary fan or air from the processor fan may also be used to cool other platform components or lower the internal ambient temperature within the system. The processor must remain within the minimum and maximum junction temperature (Tj) specifications at the corresponding Thermal Design Power (TDP) value listed in Table 23. The maximum junction temperature is defined by an activation of the processor Intel Thermal Monitor.

Refer to Section 5.1.2 for more details. Analysis indicates that real applications are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the Thermal Design Power (TDP) indicated in Table 23. The Intel Thermal Monitor feature is designed to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.1.2. In all cases the Intel Thermal Monitor feature must be enabled for the processor to remain within specification.

Table 23. Power Specifications for the Intel Pentium M Processor

Symbol	Core Frequency & Voltage	Thermal Design Power			Unit	Notes	
TDP	1.70 GHz & 1.484 V		24.5				
	1.60 GHz & 1.484 V		24.5				
	1.50 GHz & 1.484 V	24.5					
	1.40 GHz & 1.484 V	22					
	1.30 GHz & 1.388 V	22					
	1.30 GHz & 1.180 V	12					
	1.20 GHz & 1.180 V	12		W	At 100°C, Notes 1, 4		
	1.10 GHz & 1.180 V	12					
	1.10 GHz & 1.004 V	7					
	1.00 GHz & 1.004 V		7				
	900 MHz & 1.004V		7				
	600 MHz & 0.956 V		6				
	600 MHz & 0.844 V	4					
Symbol	Parameter	Min	Тур	Max	Unit	Notes	
P _{AH} , P _{SGNT}	Auto Halt, Stop-Grant Power at: 1.484 V 1.388 V (Pentium M 1.30 GHz) 1.180 V 1.004 V (ULV Pentium M) 0.956 V 0.844 V (ULV Pentium M) Sleep Power at: 1.484 V			7.3 7.3 3.2 1.7 1.8 0.9	W	At 50°C, Note 2	
P _{SLP}	1.388 V (Pentium M 1.30 GHz) 1.180 V 1.004 V (ULV Pentium M) 0.956 V 0.844 V (ULV Pentium M)			7.0 3.0 1.5 1.7 0.8	w	At 50°C, Note 2	
P _{DSLP}	Deep Sleep Power at: 1.484 V 1.388 V (Pentium M 1.30 GHz) 1.180 V 1.004 V (ULV Pentium M) 0.956 V 0.844 V (ULV Pentium M)			5.1 5.4 2.2 1.0 1.1 0.55	W	At 35°C, Note 2	
P _{DPRSLP}	Deeper Sleep Power			0.55	W	At 35°C, Note 2	
P _{DPRSLP} ULV	Deeper Sleep Power (ULV Pentium M only)			0.37	W	At 35°C, Note 2	
T _J	Junction Temperature	0		100	°C	Notes 3, 4	

NOTES:

The Thermal Design Power (TDP) specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can dissipate.

- Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
- As measured by the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum T_J has been reached. Refer to Section 5.1 for more details.
- The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.

5.1 Thermal Specifications

5.1.1 Thermal Diode

The Intel Pentium M processor incorporates two methods of monitoring die temperature, the Intel Thermal Monitor and the thermal diode. The Intel Thermal Monitor (detailed in Section 5.1) must be used to determine when the maximum specified processor junction temperature has been reached. The second method, the thermal diode, can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but cannot be used to indicate that the maximum T_J of the processor has been reached. Please see Section 5.1.2 for thermal diode usage recommendation when the PROCHOT# signal is not asserted.

Table 24 and Table 25 provide the diode interface and specifications.

Note:

The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the $T_{\rm J}$ temperature can change.

The offset between the thermal diode based temperature reading and the Intel Thermal Monitor reading can be characterized using the Intel Thermal Monitor's automatic mode activation of the thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events.

Table 24. Thermal Diode Interface

Signal Name	Pin/Ball Number	Signal Description
THERMDA	B18	Thermal diode anode
THERMDC	A18	Thermal diode cathode

Table 25. Thermal Diode Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	5		300	μΑ	Note 1
n	Diode Ideality Factor	1.00151	1.00220	1.00289		Notes 2, 3, 4
R _T	Series Resistance		3.06		ohms	2, 3, 5

NOTES:

- Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range.
- 2. Characterized at 100°C.
- 3. Not 100% tested. Specified by design/characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

 $I_{FW}=I_s*(e^{(qVD/nkT)}-1)$

- Where I_S = saturation current, q = electronic charge, V_D = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).
- 5. The series resistance, R_T, is provided to allow for a more accurate measurement of the diode junction temperature. R_T as defined, includes the pins of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor. R_T can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:
 T_{error} = [R_T*(N-1)*I_{FWmin}]/[(no/q)*In N]

5.1.2 Intel Thermal Monitor

The Intel Thermal Monitor helps control the processor temperature by activating the TCC when the processor silicon reaches its maximum operating temperature. The temperature at which the Intel Thermal Monitor activates the thermal control circuit (TCC) is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would not be detectable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously.

The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep® technology transition when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: Automatic mode and On-Demand mode. If both modes are activated, Automatic mode takes precedence. **The Intel Thermal Monitor Automatic Mode must be enabled via BIOS for the processor to be operating within specifications**. There are two Automatic modes called Intel Thermal Monitor 1 and Intel Thermal Monitor 2. These modes are selected by writing values to the Model Specific Registers (MSRs) of the processor. After Automatic mode is enabled, the TCC will activate only when the internal die temperature reaches the maximum allowed value for operation.

Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation exists, the processor will perform an Enhanced Intel SpeedStep technology transition to a lower operating point. When the processor temperature drops below the critical level, the processor will make an Enhanced Intel SpeedStep technology transition to the last requested operating point. Intel Thermal Monitor 2 is the recommended mode on the Intel Pentium M processor.

If a processor load-based Enhanced Intel SpeedStep technology transition (through MSR write) is initiated when an Intel Thermal Monitor 2 period is active, there are two possible results:

1.If the processor load based Enhanced Intel SpeedStep technology transition target frequency is **higher** than the Intel Thermal Monitor 2 transition based target frequency, the processor load-based transition will be deferred until the Intel Thermal Monitor 2 event has been completed.

2.If the processor load-based Enhanced Intel SpeedStep technology transition target frequency is

lower than the Intel Thermal Monitor 2 transition based target frequency, the processor will transition to the processor load-based Enhanced Intel SpeedStep technology target frequency point.

When Intel Thermal Monitor 1 is enabled, and a high temperature situation exists, the clocks will be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and will decrease linearly as processor core frequencies increase. After the temperature has returned to a non-critical level, modulation ceases and the TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured and cannot be modified. Also, Automatic mode does not require any additional hardware, software drivers or interrupt handling routines. Processor performance will be decreased by the same amount as the duty cycle when the TCC is active, however, with a properly designed and characterized thermal solution the TCC most likely will never be activated, or will be activated only briefly during the most power intensive applications.

The TCC may also be activated using On-Demand mode. If bit 4 of the ACPI Intel Thermal Monitor Control Register is written to a "1", the TCC will be activated immediately, independent of the processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor Control Register. In Automatic mode, the duty cycle is fixed at 50% on, 50% off, in On-Demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode can be used at the same time Automatic mode is enabled, however, if the system tries to enable the TCC via On-Demand mode at the same time Automatic mode is enabled and a high temperature condition exists, Automatic mode will take precedence.

An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active.

Note: PROCHOT# will not be asserted when the processor is in the Stop-Grant, Sleep, Deep Sleep, and Deeper Sleep low power states (internal clocks stopped), hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within the 100 °C (maximum) specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low power state and the processor junction temperature drops below the thermal trip point.

If Automatic mode is disabled the processor will be operating out of specification. Whether the automatic or On-Demand modes are enabled or not, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125 °C. At this point the system bus signal THERMTRIP# will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3.

This page intentionally left blank.

6 Debug Tools Specifications

Please refer to the *ITP700 Debug Port Design Guide* and the platform design guides for information regarding debug tools specifications.

6.1 Logic Analyzer Interface (LAI)

Intel is working with logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in debugging Intel Pentium M processor systems. The following information is general in nature. Specific information must be obtained from the logic analyzer vendor.

Due to the complexity of Intel Pentium M processor systems, the LAI is critical in providing the ability to probe and capture system bus signals. There are two sets of considerations to keep in mind when designing an Intel Pentium M processor system that can make use of an LAI: mechanical and electrical.

6.1.1 Mechanical Considerations

The LAI is installed between the processor socket and the Intel Pentium M processor. The LAI pins plug into the socket, while the Intel Pentium M processor pins plug into a socket on the LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between the Intel Pentium M processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor. System designers must make sure that the keepout volume remains unobstructed inside the system.

6.1.2 Electrical Considerations

The LAI will also affect the electrical performance of the system bus; therefore, it is critical to obtain electrical load models from each of the logic analyzers to be able to run system level simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for electrical specifications and load models for the LAI solution they provide.